
15th Annual Meeting of the European TEX Users

March 7 - March 11, 2005

Abbaye des Prémontrés
Pont-à-Mousson

France

Programme Committee
Volker RW Schaa
Fabrice Popineau
Jacques André
Hans Hagen
Daniel Flipo

Bogusław Jackowski
Włodzimierz Bzyl

Petr Sojka
Giuseppe Bilotta
Steve Grathwohl
Bernd Raichle

Organizing Committee
Volker RW Schaa
Fabrice Popineau
Maurice Laugier
Klaus Höppner
Hans Hagen

Jerzy Ludwichovski
Sarah Grimaud

Gilles Pérez-Lambert
Michèle Jouhet

Preprints EuroTEX2005 – Pont-à-Mousson, France

Preface i

Monday, March 7
09:00 Welcome

09:15 MOT01 Javier Bezos
Mem. A Multilingual Environment for LATEX with Aleph

09:45 MOT02 Yannis Haralambous, Gábor Bella
Omega Becomes a Sign Processor

10:30 – 11:00 Coffee Break

11:00 MOT03 Joachim Schrod, Chris Rowley, Christine Detig
A Taxonomy of Automated Typesetting Systems

11:45 MOT04 David Kastrup
Designing an Implementation Language for a TEX Successor

12:30 – 14:00 Lunch

14:00 MOT05 Jim Hefferon
CTAN Plans

14:30 MOT06 Denis Roegel
MP2GL: prototyping 3D objects with Metapost

15:00 MOT07 Taco Hoekwater
Metapost Developments

15:30 – 16:00 Coffee Break

16:00 MOT08 Péter Szabó
Verbatim Phrases and Listings in LATEX

16:30 MOT09 Stephan Lehmke, Arne Jans, Andre Dierker
From RTF to XML to LATEX

17:00 MOT10 Jonathan Fine
TEX Forever!

17:30 DANTE e.V. General Meeting
GUTenberg General Meeting

20:30 Diner
22:00 – 23:00 BoF sessions

Tuesday, March 8
09:00 TUT01 The TEI/TEX Interface

Sebastian Rahtz

09:45 TUT02 Frank Mittelbach, Chris Rowley
LATEX3 News

10:30 – 11:00 Coffee Break

Preprints EuroTEX2005 – Pont-à-Mousson, France

ii Preface

11:00 TUT03 Hans Hagen
The 16 Faces of a Dutch Math Journal

11:45 TUT04 Adam Twardoch
Typographic Perfection with OpenType?

12:30 – 14:00 Lunch

14:00 TUT05 Gerd Neugebauer
Namespaces for εXTEX

14:30 TUT06 Patrick Gundlach
contextgarden.net: The ConTEXt Wiki

15:00 TUT07 Thành Hàn Thế
Experiences with Micro-Typographic Extensions of pdfTEX in Practice

15:30 – 16:00 Coffee Break

16:00 TUT08 Johannes Küster
NewMath and Unicode

16:30 TUT09 Bogusław Jackowski, Janusz M. Nowacki
Latin Modern fonts: how less means more

17:00 – 19:00 TUT10 Panel discussion with Hermann Zapf and Donald Knuth
‘With a little help from the wizards’

20:00 Gala Diner

Wednesday, March 9
8:30 WET01 Thomas Feuerstack

ProTEXt, a new TEX-Collection for Beginners

9:00 WET02 Jean-Michel Hufflen
Bibliography Styles Easier with MlBibTEX

9:30 WET03 Antoine Lejay
La machine à formulaires (The Forms’ Machine)

10:00 WET04 Frank-René Schäfer
ŞäferTEX: Source Code Esthetics for Automated Typesetters

10:30 – 11:00 Coffee Break

11:00 WET05 Jérôme Laurens
The TEX Wrapper Structure: A Basic TEX Document Model Imple-
mented in iTEXMac

11:30 WET06 Stephan Lehmke
Case Study of TEX in Commercial Data Based Publishing: Completely
Automatic Typesetting of a Large Product Catalogue

Preprints EuroTEX2005 – Pont-à-Mousson, France

Preface iii

12:00 WET07 David Kastrup
The Bigfoot Bundle for Critical Editions

12:30 – 14:00 Lunch

14:00 Excursion
19:30 Lunch
22:00 – 23:00 BoF sessions

Thursday, March 10
09:00 – 12:30 THT01 Sebastian Rahtz, Hans Hagen

XML to PDF, where does TEX fit in

09:00 – 10:30 THT02 Stephan Lehmke
TEXPower – Dynamic Presentations with LATEX

10:30 – 11:00 Coffee Break

11:00 – 12:30 THT03 Gerd Neugebauer, Michael Niedermair
εXTEX – Under the Hood

12:30 – 14:00 Lunch

14:00 – 17:30 THT04 Denis Roegel
Metapost

14:00 – 15:30 THT05 Staszek Wawrykiewicz
TEXLive 2004 Windows Installer

15:30 – 16:00 Coffee Break

16:00 – 17:30 THT06 David Kastrup
Installing and using Emacs, AUCTEX, RefTEX, preview-latex

19:30 Diner
22:00 – 23:00 BoF sessions

Friday, March 11
09:00 – 10:30 FRT01 Hans Hagen

ConTEXt

09:00 – 10:30 FRT02 N.N.
Advanced LATEX

10:30 – 11:00 Coffee Break

11:00 – 12:30 FRT01 continuing
FRT02

12:30 – 14:00 Lunch
14:00 Farewell

Preprints EuroTEX2005 – Pont-à-Mousson, France

iv Preface

Contents

Preface . i
Schedule . ii
Contents . v

Monday - Talks . 1
MOT01 – Mem. A Multilingual Environment for LATEX with Aleph 1
MOT02 – Omega Becomes a Sign Processor . 8
MOT03 – A Taxonomy of Automated Typesetting Systems . 20
MOT04 – Designing an Implementation Language for a TEX Successor 21
MOT05 – CTAN Plans . 27
MOT06 – MP2GL: prototyping 3D objects with Metapost . 28
MOT07 – Metapost Developments . 29
MOT08 – Verbatim Phrases and Listings in LATEX . 30
MOT09 – From RTF to XML to LATEX . 51
MOT10 – TEX Forever! . 57

Tuesday - Talks . 67
TUT01 – The TEI/TEX Interface . 67
TUT02 – LATEX3 News . 68
TUT03 – The 16 Faces of a Dutch Math Journal . 69
TUT04 – Typographic Perfection with OpenType? . 70
TUT05 – Namespaces for εXTEX . 71
TUT06 – contextgarden.net: The ConTEXt Wiki . 76
TUT07 – Experiences with Micro-Typographic Extensions of pdfTEX in Practice 81
TUT08 – NewMath and Unicode . 89
TUT09 – Latin Modern fonts: how less means more . 97
TUT10 – Panel discussion with Hermann Zapf and Donald Knuth: ’With a little help from the

wizards’ . 104
Wednesday - Talks . 105

WET01 – ProTEXt, a new TEX-Collection for Beginners . 105
WET02 – Bibliography Styles Easier with MlBibTEX . 106
WET03 – La machine à formulaires (The Forms’ Machine) . 120
WET04 – ŞäferTEX: Source Code Esthetics for Automated Typesetters 128
WET05 – The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac . 129
WET06 – Case Study of TEX in Commercial Data Based Publishing: Completely Automatic

Typesetting of a Large Product Catalogue . 137
WET07 – The Bigfoot Bundle for Critical Editions . 138

Thursday - Tutorials . 144
THT01 – XML to PDF, where does TEX fit in . 144
THT02 – TEXPower – Dynamic Presentations with LATEX . 145
THT03 – εXTEX - Under the Hood . 146
THT04 – Metapost . 147
THT05 – TEXLive 2004 Windows Installer . 148
THT06 – Installing and using Emacs, AUCTEX, RefTEX, preview-latex 149

Friday - Tutorials . 150
FRT01 – ConTEXt . 150
FRT02 – Advanced LATEX . 151

Appendices . 152

v

Preprints EuroTEX2005 – Pont-à-Mousson, France

List of Authors . 152
Participants List . 153

vi Preface

Mem. A multilingual package for LATEX with Aleph

Javier Bezos
Typesetter and consultant

http://perso-wanadoo.es/jbezos/

http://mem-latex.sourceforge.net/

jbezos@users.sourceforge.net

Abstract

Mem provides an experimental environment for multilingual and multiscript type-
setting with LATEX in the Aleph typesetting system. Aleph is Unicode-savvy and
combines features of Omega and eTEX. With Mem you should be able to typeset
Unicode documents mixing several languages and several scripts taking advantage
of its built-in OCP mechanism and with a high level interface.

Currently still under study and development, Mem is designed to be capable
of following the development of Omega and LATEX3, and I’m publishing it to
encourage other people to think about the ideas behind it and to discuss the
advantages and disadvantages of several approachs to the involved problems.

The project is now hosted in the public respository SourceForge.net to open
its development to other people.

Introduction

Until now, the only way to adapt LATEX for it to
become a multilingual system is babel; although an-
other systems like mlp (by Bernard Gaulle) or poly-

glot (by me) have appeared now and then, in prac-
tice only babel is used. It exploits TEX in order to
accomplish some tasks which TEX was not intended
for, like right to left writing and transliterations,
but it’s clear that the next step requires features
not available in TEX. Further, while one can write
documents in several languages, babel is esentially
a way to change the main language in monolingual
documents.

Long ago, Omega and ε-TEX developement
started independently and recently a new project
named Aleph, combining features from both sys-
tems, has been launched. There are several pack-
ages for specific languages taking advantage of the
features in Omega (devnag, makor, CJK, etc.) and
the package omega provided a few macros to ease its
use, now expanded with the name of Antomega by
Alexej Kryukov [5], but they don’t provide a generic
high level interface to add a language and to syn-
chronize it with other languages in a consistent and
flexible framework. On the other hand, LATEX3 con-
tinues evolving and one of its aims is to have built-in
multilingual capabilities.

It is in this context that Mem was born. Actu-
ally, it was born several years ago with the name of
Lambda and presented in the Fifth Symposium on

Multilingual Information Processing (Tokyo, 2001),
but for several reasons its development was paused.1

Its goal is twofold: in the short-term, to provide a
real working package for Aleph to become useable
with LATEX, taking advantage of features like the
OCP mechanism; in the mid-term, to use the expe-
rience gained with a real life system in order to de-
velop better multilingual environments with LATEX3
and Omega.

The rest of this paper of devoted to highlight
some of the issues and therefore it does not intend
to be exhaustive. To get a full picture of the pack-
age please refer to the manual [3], which is being
written at the same time as the package, because I
think the documentation is an integral part in the
development process. I’ve divided the topics in two
parts, those related directly to TEX, and those re-
lated to the Aleph/Omega extensions, particularly
to the OCP mechanism.

The TEX part

Organizing and selecting features Language
commands are grouped in components, with a few
predefined ones—namely, names, date, tools and
text. At first sight this resembles babel, but in fact
this similitude is only superficial, because you are
free to organize and to select components. The limit

1 There is no paper, but you can find the slides on http://

perso.wanadoo.es/jbezos/mlaleph.html. In fact, Mem was
born even before, in 1996, with the name of polyglot as I shall
explain shortly.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT01

Mem. A Multilingual Environment for LATEX with Aleph
Javier Bezos

1

would be a component per macro but this does not
seem sensible; for example, left and right guillemets
could be a single group. On the other hand, too
many components would be unconvenient for the
user. I think a sort or component/subcomponent
model should be devised (eg, text.guillemets),
and at the time of this writing I’m working on a
system to allow even decisions at macro level like
text.guillemets.\lguillemet.

This poses the problem to determine which
components are active at a certain point of the doc-
ument. There are, of course, systems like those
in CSS and other formatting languages based on
description rules for transfomations based on con-
tent (for example, with the keywords inherit and
ignore). However, TEX allows programmable rules
for transformation based on format and such a
model seems very limited (and the term “inherit”
can be inappropiate in the context of an object-like
environment).2 Unlike CSS, with its closed set of
properties, TEX allows creating new properties and
therefore new ways to organize the document layout.

There is a proposal from Frank Mittelbach and
Chris Rowley [7] based on nesting levels, with com-
ments about the main issues to be addressed, but
since this paper is somewhat abstract regarding the
possible solutions it’s difficult to determine if that
model will be enough for many purposes. In par-
ticular, it presumes the structure of the document
is a tree, and therefore, as its authors point out,
the model has to be extended to provide the neces-
sary support of “special regions” that receive con-
tent from other parts of the document.

A basic idea in that paper is that there is a
base language for large portions of text as well as
embedded languages segments, which are nestable.
Although in a limited way, these concepts shown
at TUG 1997 related to a clear separation between
base and embedded languages were present at that
time in my own polyglot package (first released early
1997) whose code I used as the base to develop
Lambda and now Mem.

On the other hand, Plaice and Haralambous in
[9] and I (in Lambda) proposed independently to fol-
low a model based in context information; the ver-
sioning system for Omega described in the former
has been worked out and much extended from a the-
oretical point of view in [11] by Plaice, Haralambous
and Rowley, with the introduction of the concept of
a typographical space. Unfortunately, such a model
cannot be carried out in full with TEX and it has not

2 See [2]. An English summary is availaible on http://

mem-latex.sourceforge.net.

been implemented in Omega, but to me it’s clear it
should be taken as a guide for Mem, and for that
matter for any multilingual environment. At the
time of this writing I was studying how to tackle
this task and the resulting model will be left for a
future paper.

Never again default values! In a well-known ar-
ticle published in the TUGboat ten years ago, Hara-
lambous, Plaice and Braams proclaimed “Never
again active characters!” [4]. Now I proclaim
the end of another source of problems in the babel

package—namely, default values. Actually, default
values are mainly associated with active characters,
but they are also present in macros. Having default
values for a certain language is not a bad thing, but
when those values are restored every time the lan-
guage is selected and they cannot be redefined with
the standard LATEX procedures then problems arise.

In Mem, a default value in a language is only a
proposal, while the final decision is left to the user,
which can change it by means of \renewcommand,
\setlenght and similars. No special syntax is re-
quired, like for example \addto\extrasspanish.
The behaviour of language commands is exactly
that of normal commands, except that their values
change when the language changes.

A macro is made specific for a certain language
with \DeclareLanguageCommand, which provides a
default definition to be used if the users likes it;
if you don’t like it, you can redefine it, since the
default value is not remembered any more. Outside
that language, there could be macros with similar
names, but they are not language specific (except if
defined for another language, of course).

Furthermore, if a language defines an undefined
macro, this is only defined in the context of that
language and you not are required to provide a de-
fault for another language, because I firmly believe
loading a language should not change at all the be-
haviour of another language. In other words, with
Mem languages are much like black boxes.

A good example could be the Basque language,
which places the figure number before the figure
name. For that to be accomplished we must make
Basque dependent several internal macros. Consid-
ering the number of languages and the fact we can-
not know a priory which changes will be necessary,
the fact languages can (or even must) decide which
macros have a default value could lead to an unman-
ageable situation which could even prevent a proper
writing of packages, because we don’t know if we
need to use \(re)newcommand or something else.

MOT01 Preprints EuroTEX2005 – Pont-à-Mousson, France

2 Mem. A Multilingual Environment for LATEX with Aleph
Javier Bezos

The Aleph/Omega part

OTP files The OCP mechanism provides a pow-
erful tool to make a wide range of text transfor-
mations which are not possible with preprocessors.
Since OCPs perform transformations after expand-
ing macros, we can guarantee all characters, and
not only that directly “visible” in the document, are
taken into account. One of the main aims of Mem

is to develop a high level interface for them, because
using the Omega primitives is somewhat awkward.
Moreover, since OCPs must be grouped in OCP-lists
before actually applying them, the advantages of a
high level interface becomes aparent—OCP-lists are
hidden to users and language developers and they
are built and applied on the fly depending on the
language and the context, thus avoiding the dan-
ger of a combinatorial explosion [11, p. 107]. For
further details on how OCPs works, see the Omega
documentation [8] and the very useful case study
[10].3

A key concept in Mem is that of process, a
set of OCPs performing a single logical task. Very
often, a task cannot be carried out by just one
OCP, but in more complex cases a set of interre-
lated OCPs will be necessary. A very good example
of this is the devnag package for Omega by Yan-
nis Haralambous, where mapping from Unicode to
the target font requires three OCPs. At the time
of this writing I’m working on OCPs to handle the
Latin/Cyrillic/Greek family of scripts, which is be-
ing a lot more involved as one could think at first
sight, and very likely a set of three OCPs will be
necessary to carry out the single process of mapping
from Unicode to the T1, T2n and LGR encodings.4

This is particularly true for Greek with its many
possible ways to represent the many possible com-
binations of letters and accents, which is far from
trivial.5

3 Still, the former is very technical and the latter is very
basic, and unfortunately an “intermediate” manual explain-
ing the implications of OCPs is not available yet, thus mean-
ing developing OTPs must be done very often by trial and
error. The Aleph Task Force and I are considering the possi-
bility to write such a manual.

4 In addition, it should be investigated if several of the
tasks done by these OCPs can be delegated to a virtual font.

5 And the LGR encoding has some odd assignments, like
placing greek psili and oxia at "5E (^) thus having the cat-
code of superscript. There is another symbol mapped to the
backslash. That would not be important except for a long-
standing bug in how OCPs treat catcodes which the Aleph
Task Force is trying to fix, because it’s a critical one. Since
there are very few LGR fonts, and very likely their number
will not increase, I’m thinking about removing the support
for that encoding and instead to write a virtual file. To add
further confusion, the Omega standard font omlgc moves the
Unicode Greek Extended chars to a non standard placement.

It’s important to remember where OCPs are
not applied: when writing to a file (e.g., the aux file),
in \edef’s, in arguments of primitives like \accent,
and in math mode. The latter is a serious limi-
tation, and the Aleph Task Force is working on a
solution. This means Mem has done very little in
these areas, except redefining \DeclareMathSymbol

to allow higher values.

Extending OTP syntax: MTP files Perhaps
the main limitation of OTP files, containing the
source code of OCPs, is that the only letters we can
use are those in the ASCII range, while for the rest
of the Unicode range we must use numerical values.
MTP files have been devised to overcome these lim-
itations so that we can use Unicode names instead
of numbers (see figure 1). Currently, they are con-
verted to OCP with a little script named mtp2ocp,
a preprocessor written in Python.

Another addition to OTPs is that it maps spa-
cial characters to several points in the Private User
Area whose catcodes are fixed (as defined by the
Mem style file). This way, characters like \, {, $,
etc., have the expected behaviour even in verbatim
mode.

I hope MTP files could help in the near future to
make the task somewhat simpler, so suggestions are
most welcome. This way we can have prototypes to
experiment with, so that in the future otp2ocp itself
could be extended with new features if necessary.
(One of the reasons I use Python is that it’s a great
language for prototyping.)

Unicode as input encoding Unicode, unlike
many other encodings, clearly separates characters
and glyphs. This means that at character level, Uni-
code can introduce controls to provide further infor-
mation about these characters, including how they
should be rendered. It is expected that this infor-
mation has to be processed in order to decide which
glyph to use. Traditional font formats (TrueType
and PostScript) do not have this capability or it is
limited.

Unicode, considered as an input encoding, is
quite different from other encondings and poses sev-
eral challenges which must be taken into account if
we want to read properly Unicode text. Currently,
conversions done by LATEX packages or Omega OCPs
just ignore these controls and instead it is supposed
the user must supply them with TEX macros.

For example:6

• letters with diacriticals, either composed or de-
composed,

6 For some hints on that, see [13]

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT01

Mem. A Multilingual Environment for LATEX with Aleph
Javier Bezos

3

.......................

[LATIN CAPITAL LETTER L WITH STROKE] => <= @"8A ;

[LATIN SMALL LETTER L WITH STROKE] => <= @"AA ;

[LATIN CAPITAL LETTER N]{botaccent}<0,>[COMBINING ACUTE ACCENT]

=> <= @"8B \(*+1-1);

[LATIN SMALL LETTER N]{botaccent}<0,>[COMBINING ACUTE ACCENT]

=> <= @"AB \(*+1-1);

[LATIN CAPITAL LETTER N]{botaccent}<0,>[COMBINING CARON]

=> <= @"8C \(*+1-1);

[LATIN SMALL LETTER N]{botaccent}<0,>[COMBINING CARON]

.......................

[LATIN SMALL LETTER I WITH MACRON]

=> <= [LATIN SMALL LETTER I][COMBINING MACRON];

[LATIN CAPITAL LETTER I WITH BREVE]

=> <= [LATIN CAPITAL LETTER I][COMBINING BREVE];

......................

[CENT SIGN] => "\UseMemTextSymbol{TS1}{162}";

[POUND SIGN] => "\UseMemTextSymbol{TS1}{163}";

[CURRENCY SIGN] => "\UseMemTextSymbol{TS1}{164}";

[YEN SIGN] => "\UseMemTextSymbol{TS1}{165}";

......................

<acc> [COMBINING GRAVE ACCENT] => "\UseMemAccent{t}{0}";

<acc> [COMBINING ACUTE ACCENT] => "\UseMemAccent{t}{1}";

<acc> [COMBINING CIRCUMFLEX ACCENT] => "\UseMemAccent{t}{2}";

Figure 1: Several chunks from MTP files using Unicode names. Currently symbols are hardcoded, not an
ideal situation.

• ligatures marked with zero width joiner,7

• hyphens, non breaking hyphens, non breaking
spaces, etc.,

• fixed width spaces,

• variation selectors,

• byte order mark.

In order to unify the character encoding used
in style files, only utf-8 and explicit Unicode values
(eg, ^^^^0376) are used, but that poses the prob-
lem with a non-Unicode document since changing
the OCP for the input encoding would mean kern-
ing and ligatures are killed. To overcome this well
known TEX limitation, input OCPs use an internal
switch mechanim to escape temporarily to utf-8 or
utf-16 (see figure 2). The trick is to pass information
to the OCP with the character ^^1b, whose mean-
ing in many character encodings is ESCAPE, followed
by another character with the operation to be per-
formed. I’m not sure if this mechanims is robust
enough, but if it were the idea could in the future
serve as a way to pass context information to a cer-
tain OCP so that its behaviour may be changed,
although of course a built-in mechanism as that pro-
posed by John Plaice et al. [11] would be preferable.

7 The semantics of this character has been extended in
Unicode 4.0 and now can be used to mark ligatures [12, p.
389ss]

f\unitext{^^^^0069}

fi fi

\unitext{^^^^0066}i

Figure 2: Entering a Unicode character with
Mem does not break ligatures.

LATEX Internal representation This section is
devoted in part to a few ideas which I put forward
in the LATEX3 list, which was followed by a very
long discussion about a multilingual model (or more
exactly, multiscript) for LATEX. These ideas lead to
introduce the concept of LICR (LATEX internal char-
acter representacion). Actually, LATEX has for a long
time had a rigorous concept of a LATEX internal rep-
resentation but it was only at this stage that it got
publicly named as such and its importance realised.8

The reader can find more on LICR in the second edi-
tion of The LATEX Companion, by Frank Mittelbach
and others [6, section 7.11.2].

What LICR does is essentially to ensure there
is only a way to represent a certain character so that

8 Chris Rowley, “Re(2): [Omega] Three threads”, e-mail
to the Omega list, 2002/11/04.

MOT01 Preprints EuroTEX2005 – Pont-à-Mousson, France

4 Mem. A Multilingual Environment for LATEX with Aleph
Javier Bezos

different input methods (say, á and \’{a}) lead to
the same representation (in that case \’a) and that
this representation is able to find a correct glyph
somehow.9 The required funtionality for that to be
accomplished is splitted in two well know packages—
namely, inputenc and fontenc.

As far as I know, no paper explaining the tech-
nical details of the LICR has been published, so I’m
going to attempt an operational definition. Before
doing that, I think remembering different kinds of
TEX expansion process is to the point (I exclude one
level expansion as done by \expandafter):

• \def no expansion.

• \edef expands anything except non expandable
tokens.

• protected \edef expands anything except non
expandable tokens and protected tokens (even
if expandable).

• execution expands anything and performs the
actions of primitives.

So, we can say LICR is what we get in a protected
expansion.

Unicode provides this kind of “internal repre-
sentation” but without the normalization of LICR.
Let’s remember Unicode allows representing char-
acters with diacritics in composed form (eg, ä) or
in decomposed form (eg, a¨), and that these forms
may be normalized to either composed or decom-
posed forms. There are three possibilities:

• normalizing to composed forms.

• normalizing to decomposed forms.

• not normalizing at all.

Decomposition has, in turn, several types, but we
won’t discuss them in this paper.

The questions here are: Is it possible the pre-
serve the LICR in Mem?; if so, must be the LICR
preserved in Mem? Does it fit in the Unicode model?

In order to answer these questions, we must re-
member the LICR relies heavily in active charac-
ters, which will be replaced in Mem by OCPs. Fur-
thermore, macros are expanded and executed (see
above) before OCPs are aplied thus making impos-
sible any attempt to catch things like \’a. It seems
that an alternative method to inputenc/fontenc
must be provided.

Once we have an expanded string, characters
are normalized to decomposed characters instead of
the composed form favoured by the Web Consor-
tium, for example (it should be noted that in the
LICR letters are decomposed). The reasons are

9 Note the LICR is not necessarily a valid input method,
because \’a is not always correct in LATEX.

\u{ȩ}

ḝ \u{\c{e}}

\c{ĕ}

Figure 3: Several ways to input the same
character. With Mem the four are strictly
equivalent, because they are converted to Unicode
and normalized. With the NFSS, if ȩ does not
exist, then the ˘ is always faked. However, with
Mem, if ȩ does not exists but ĕ does, then¸is
added to the real composite character.

mainly practical, because the composed form to be
selected in some cases depends on the glyphs avail-
able. Since normalizing to composed forms would
require decomposing, sorting diacriticals and then
composing, and font processes would require decom-
posing again and sorting again to see if there are
matching glyphs for the first accent above or the first
accent below (or even a combination of both), by us-
ing directly the decomposed form we are avoiding a
lot of overhead (see figure 3). In fact, the Unicode
book says [12, p. 115]:

In systems that can handle nonspacing
marks, it may be useful to normalize so as
to eliminate precomposed characters. This
approach allows such systems to have a ho-
mogeneous representation of composed char-
acters and maintain a consistent treatment of
such characters.

This dual representation of characters is what is
making processes for the Latin/Cyrillic/Greek script
so complex, but we have to deal with them if we
want a Unicode typesetting engine.

The Latin script has a rich typographical his-
tory, which not always can be reduced to the dual
system character/glyph. As Jaques André has
pointed out, “Glyphs or not, characters or not, types
belong to a class that is not recognized as such” [1].
Being a typesetting system, neither Aleph nor Mem

can ignore this reality, and therefore we will take
into account projects like the Medieval Unicode Font
Initiative (MUFI)10 or the Cassetin Project. How-
ever, it doesn’t mean a Unicode mechanism will be
rejected when available. For example, ligatures can
be created with the zero width joiner. If there

10 http://www.hit.uib.no/mufi/

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT01

Mem. A Multilingual Environment for LATEX with Aleph
Javier Bezos

5

is a certain method to carry out a certain task in
Unicode, it will be emulated.

Diacritical marks The Unicode 4.0 book states
[12, p. 184] when discussing spacing modifier letters:

A number of the spacing forms are covered
in the Basic Latin and Latin-1 Supplement
blocks. The six common European diacritics
that do not have encodings there are added
as spacing characters.

In other words, except for these six diacrit-
ics (U+02D8-U+02DD), the spacing forms of com-
bining characters are those in the range U+0000-
U+00FF. Unfortunately, it happens this is not true,
since the spacing caron accent (U+02C7) is not
encoded in these blocks. Further, one of these
six diacritics encoded separately—namely, the tilde
U+02DC—does exist in these blocks (U+007E).

What to do, then? One will be forced to find
some kind of hint, and one can do it readily—all
characters in the block Spacing Modifier Letters
are prefixed with modifier letter, except the six
spacing clones and caron (U+02C7). From this,
we can infere that the right spacing form for the
circumflex accent is not the modifier letter vari-
ant, but the one in the Basic Latin Block, exactly
like the acute accent. No doubt the “small” tilde
has been encoded separately because the ASCII tilde
has already a special meaning in several OS’s.

Still, I think there is a better solution, or rather
a better encoding which does not pose this problem.
Since the glyphs for diacritics are mainly intended
for use with the \accent primitive, one can conclude
they are, after all, combining characters. The fact
we need further processing with TEX does not pre-
vent considering these glyphs conceptually as non-
spacing characters—this is just the way TEX works.
Since composing diacritical marks are encoded anew
in Unicode, we don’t need to be concerned with
legacy encodings and their inconsistencies.

Conclusions

In this paper I have scratched only the surface of
some topics, which deserve by themselves a whole
paper. In addition, many others have not been even
treated like for example:

• Hyphenation, including patterns for Unicode-
like fonts.

• Automatic selection of languages and fonts de-
pending on the current script.

• Since letters are not active any more, one should
be allowed to write \capı́tulo or \κǫφάλαιo

instead of \chapter.

• Fonts—monolythic or modular?

• OpenType—must its information be extracted
so that it’s under our control? (However, using
OpenType fonts with TEX is still a failed sub-
ject, although there are interesting projects like
XeTEX.11)

Before finishing this paper, I would like to cite
Frank Mittelbach in a message posted to the LATEX3
list:

The fact that we don’t agree with some points
in it only means that the processes are so
complicated that we haven’t yet understood
them properly and so need to work further
on them.

I hope Mem will provide an environment which
would help us (including me) to understand better
how OCPs work as well the issues a multilingual
system poses.

References

[1] André, Jacques: “The Cassetin Project – To-
wards an Inventory of Ancient Types amd the
Related Standardized Encoding”, Proceedings

of the Fourteenth EuroTEX Conference, Brest
(France), 2003.

[2] Bezos, Javier: “De XML a PDF, tipograf́ıa
con TEX”, Proceeding of the IV Jornadas de

Bibliotecas Digitales, Alicante, Spain, 2003 [in
Spanish].

[3] Bezos, Javier: “Mem: A multilingual envi-
ronment for Lamed/Lambda”, 2004, CTAN:

macros/latex/exptl/mem/mem.pdf

[4] Haralambous, Yannis, John Plaice and Jo-
hannes Braams: “Never again active charac-
ters! Ω-Babel”, TUGboat, Volume 16 (1995),
No. 4.

[5] Kryukov, Alexej: Typesetting Multilingual doc-

uments with Antomega, 2003, TeXLive2003:

texmf/doc/omega/antomega/antomega.pdf.

[6] Mittelbach, Frank, and Michel Goossens: The

LATEX Companion, Addison-Wesley, 2nd ed.,
2004.

[7] Mittelbach, Frank, and Chris Rowley: “Lan-
guage Information in Structured Documents:
A Model for Mark-up and Rendering”,
http://www.latex-project.org/papers/

language-tug97-paper-revised.pdf.

[8] Plaice, John, and Yannis Haralambous:
“Draft documentation for the Ω system”,
2000, TeXLive2003:/texmf/doc/omega/base/
doc1-12.ps.

11 http://scripts.sil.org/cms/scripts/page.php

?site id=nrsi&item id=XeTeX& sc=1

MOT01 Preprints EuroTEX2005 – Pont-à-Mousson, France

6 Mem. A Multilingual Environment for LATEX with Aleph
Javier Bezos

[9] Plaice, John, and Yannis Haralambous: “Sup-
porting multidimensional documents with
Omega”, Fifth International Symposium on
Multilingual Information Processing, Tokyo,
Japan, 2001, http://omega.enstb.org/

papers/dimensions.pdf.

[10] Plaice, John, and Yannis Haralambous: “Mul-
tilingual typesetting with Ω, a Case Study:
Arabic”, TeXLive:/texmf/doc/omega/base/

torture.ps.

[11] Plaice, John, et al.: “A multidimensional ap-
proach to typesetting”, TUGboat, Volume 24
(2003), No. 1.

[12] The Unicode Consortium: The Unicode Stan-

dard, Version 4, Addison-Wesley, 2003.

[13] The Unicode Consortium: Unicode in XML

and other Markup Languages, Unicode Techni-
cal Report #20, W3C Note 13 June 2003.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT01

Mem. A Multilingual Environment for LATEX with Aleph
Javier Bezos

7

Omega Becomes a Sign Processor

Yannis Haralambous
ENST Bretagne

yannis.haralambous@enst-bretagne.fr

http://omega.enstb.org/yannis

Gábor Bella
ENST Bretagne

gabor.bella@enst-bretagne.fr

Characters and Glyphs

The distinction between “characters” and “glyphs”
is a rather new issue in computing, although the
problem is as old as humanity: our species turns out
to be a writing one because, amongst other things,
our brain is able to interpret images as symbols be-
longing to a given writing system. Computers deal
with text in a more abstract way. When we agree
that, in computing, all possible “capital A” letters
are represented by the number 65, then we cut short
all information on how a given instance of capital let-
ter A is drawn. Modern computing jargon describes
this process as “going from glyphs to characters.”
If a glyph is the image of a writing system’s atomic
unit, a character is an interpretation of that image,
an interpretation shared by many glyphs drawn by
different people in different places at different times.
If all these drawings are equivalent in terms of in-
terpretation, we can consider character as an equiv-
alence class of glyphs. To be operational such an
equivalence class must be described in a clear and
unambiguous way. This is why we define charac-
ter as being a description of an equivalence class of
glyphs [7, pp. 53–58], [6].

Arabic text provides a typical illustration
ground for the concepts of character and glyph. In
Arabic alphabet, letters are contextual, in the sense
that a given letter will change form according to
the presence or absence of other surrounding ones.
When we refer to an Arabic letter and represent it
graphically, we use the isolated form. We can also
refer to it by its description (for example: arabic

letter jeem) and this can be considered as de-
scription of a “character”: the equivalence class of
shapes this letter can take in millions of Arabic doc-
uments. While there may be millions of instances of
this letter, according to Arabic grammar they all be-
long to one of only four forms: isolated �, initial �,

medial �, or final �. Hence, we could choose to have

not one but four equivalence classes of shapes: ara-

bic initial letter jeem, arabic medial letter

jeem, and so on. But are these “characters”?
Answering to this question requires a pragmatic

approach. What difference will it make if we have
one or rather four characters for letter jeem? There
will indeed be a difference in operations such as
searching, indexing, etc. A good question to ask
is: “when I’m searching in an Arabic document, am
I looking for specific forms of letters?” Most of the
time, the answer is negative.1 Form-independent
searching will, most of the times, produce better re-
sults and this implies that having a single character
for all forms is probably a better choice.2

Unicode is a character encoding. In other
words, it contains descriptions of characters and
tries hard to define characters properly by avoiding
dependence on glyphs.3

1 Arabic words are not always visually segmented as En-
glish ones—there is, for example, no guarantee that the first
letter of a word will always be in initial form: if a word start-
ing with jeem is preceded by the definite article al, then the
jeem will end up being in medial form.

2 Greek is different: sigma doesn’t “become” final because
it “happens” to be at the end of a word. While medial sigma

can appear anywhere, final sigma is used mainly for the end-
ings of particular grammatical forms and in onomatopeias or
foreign words. One would hardly ever search for both the fi-
nal and medial form of sigma since their rôles are distinct.
To illustrate this, when we abreviate a word by a period at
a sigma then the latter does remain medial despite being the
final letter: φιλοσοφ¬α → φιλοσ. Hence it is quite logical to
use distinct characters for medial and final sigma.

3 This is not always the case because of Unicode’s
tenth founding principle, namely convertibility of legacy
encodings—and legacy encodings contain all kinds of things.
For example, again in the case of Arabic, the main Unicode
Arabic table indeed contains only form-independent “char-
acters.” But, hidden towards the end of the first Unicode
plane, one finds several hundreds of codepoints containing
Arabic letters and ligatures in fixed forms, for legacy reasons.
Like human history (or Stephen King’s movies) Unicode has
shadowy places which people try to avoid and even to forget
that they exist.

MOT02 Preprints EuroTEX2005 – Pont-à-Mousson, France

8 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

The character vs. glyph issue is far from being
solved. In this paper we give an attempt to tran-
scend it by introducing a new concept: the sign.

A sign is a set {c, p1 = v1, . . . , pn = vn, g} where c

is a character, g a glyph, and pi an arbitrary num-
ber of named properties taking values vi. Charac-
ter, glyph, number of properties, their names and
their values can be changed at any time, by spe-
cial syntax in the input file, or by OTPs, or by
interaction with fonts.

Using the term “sign” we clearly refer to a Saus-
surian linguistics tradition whose relevance for
nowadays semiotics needs not to be proven. For
Saussure [11, p. 99], sign is the basic discrete unit
of meaning. It is a dual entity made up of a signifier
and a signified. For instance, when we write or pro-
nounce the word “tree,” the visual or auditory image
of this word is the signifier and the concept of tree is
the signified. Inspired of this analysis one could at-
tempt to apply the notion of sign to characters and
glyphs, by asserting that glyph is signifier, and char-
acter is signified. Nevertheless, in semiotics things
are not that simple because linguists generally deal
with units of meaning rather than with words per
se, and even less with letters. A letter inside a word
is not considered to be a Saussurian sign.

This is why we are bound to warn the reader
that our concept of sign is inspired from but not
identical to Saussurian sign.

In Principio Creavit Knuth TEXum

How does TEX deal with characters and/or glyphs?
First of all, .tex files contain characters. When

TEX reads a file, it converts the data stream into to-
kens. A token ([10, §289] or [8], which is an exegesis
of Knuth’s B) is either a “character token” (that is,
two numbers: a character code and the character’s
“category,” which provides the specific rôle played
by the given character code, for example whether it
is a math mode espace character like $, or a com-
ment escape character like %, or a group delimiter
like {, and so on), or a “control sequence token.”

If we leave aside for a moment the fact that TEX
cannot read character codes above 255, one could
claim that “character tokens” can still be considered
as “characters.” What happens next?

Parsing these tokens, TEX builds node lists
(horizontal and vertical). A node is a typed atomic
unit of information of a list. The amount and nature
of data contained in nodes depend on their type. A
“character node” [10, §134] (or “charnode”) is made
of two numbers: a font ID and the position of the
glyph in the font table. But the latter is not bound

to have any relation whatsoever with its character
code. Obviously, we can hardly talk about charac-
ters at this point: we have crossed the bridge to
Glyphland.

Another very interesting node type is the “lig-
ature node” [10, §143]. This one contains a font ID,
a glyph position in the font table, and a pointer to
a linked list of charnodes. This list is in fact the
“decomposition” of the ligature. TEX needs it in
case it has to “break” the ligature during paragraph
building, for example when a word needs to be hy-
phenated inside a ligature.

Talking about hyphenation, there is a node
called “discretionary node” [10, §145]. This node
contains two pointers to horizontal lists, as well as
an integer. These horizontal lists are what is type-
set when we break a word, before and after the line
break (in standard cases the first one contains only a
hyphen, and the second one is empty). The integer
is the number of nodes of the main horizontal list
to delete if the word is hyphenated (in other words:
how many nodes to replace by the two horizontal
lists we mentioned).

As we see, in the three node types de-
scribed above only glyphs are used—never charac-
ters. There seems to be a contradiction with the
very nature of hyphenation: after all, words are hy-
phenated according to rules given by natural lan-
guage grammars, and these grammars apply to char-
acters, not to glyphs. Indeed, would you hyphenate
a word differently if some letters had calligraphic
shapes? Certainly not, but for TEX, these letters
are glyphs in font tables, and if variant forms exist,
then their positions in the font tables are necessar-
ily different from the standard ones. How does TEX
deal with this?

There is in TEX a primitive called \lccode (and
a corresponding WEB macro called lc code). Each
glyph in a font participating in hyphenation has nec-
essarily a lc code value. These values are usually
initialized in the format.

lc code is in fact a mapping between glyphs and
characters. Hyphenation rules are written using pat-
terns, and patterns use characters. When TEX needs
to hyphenate words in a paragraph, it first maps
glyphs back to characters using lc code [10, §892–
899], and then applies hyphenation rules.

This method seems to work, but the user must,
at all times, use the appropriate lc code settings for
each font.4

4 It is worth mentioning that lc code has a big advantage
after all: it allows simplification of hyphenation patterns.
Indeed, instead of mapping a glyph to the precise character
it represents, one can use equivalence classes of characters.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

9

Let us continue our journey through TEX and see
what happens in the final stage. There is no
surprise: the information contained in charnodes
(namely font ID and glyph position) is output to
the DVI file [10, §619]. Ligature nodes are treated
similarly [10, §652]: only font ID and glyph po-
sition of the ligature remains, provided of course
that the ligature has survived hyphenation. Discre-
tionary nodes vanish long before output since either
hyphenation has occured and the two horizontal lists
pointed by the node have found their way into the
DVI file, or no hyphenation has occured and the
discretionary node falls into oblivion.

When TEX and the DVI file format were devel-
oped, this was the best possible approach: DVI files
had to be short, and there was no need to insert more
information than required to print. And indeed, a
printing device doesn’t care whether a glyph is a lig-
ature or whether it derives from hyphenation; print-
ing is done in Glyphland, at the very end of the line
of document production process. Even PostScript
language didn’t change that situation, although it
made printing devices more clever (clever enough to
interpret a very rich prgramming language).

Dixitque Berners Lee: fiat Web
et facta est Web

Things changed when DVI and PostScript were
not anymore the only targets of TEX document
production process. The Web brought the era of
electronic documents in various formats such as
PDF, XHTML, etc. These documents allow inter-
action with textual contents: copy-and-paste of text
blocks, searching, indexing, etc.

When we search for a word inside a document,
or in a collection of documents, do we care about the
shape of its letters? Most of the time, the answer is
no. Otherwise, it would be quite hard to find a word
in a document written in Zapfino or Poetica, since
one has to predict the precise variant form used for
every letter, and there are many of them.

In this kind of situation one would like to inter-
act with the document on the character level. But
if PDF or XHTML files are produced by TEX, then
the information on characters is lost. A very sim-
ple example: if ‘fi’ is represented in a DVI file as
glyph 12 of font cmr10, with no reference whatso-
ever to the character string ‘f-i’, then how on earth
can we search for the word ‘film’ by entering charac-
ters ‘f’, ‘i’, ‘l’, ‘m’ in our program’s search interface?

For example, in Greek, hyphenation does not (or very rarely)
depend on accents and breathings, so we can map all letters
with diacritics into base letter classes and write patterns using
the latter.

There is no natural solution to this problem.
Acrobat Distiller tries to give an algorithmic so-
lution by using PostScript font glyph names ([7,
pp. 651–653], [1]). The idea is the following: in
PostScript type 1 fonts, glyphs have names (namely
the names of PostScript subroutines which contain
the Type 1 operator glyph’s description); when cre-
ating a variant glyph of, let us say, letter ‘e’, design-
ers are requested to use a name like e.foo where
foo is some description of the variant: the first
part of the name identifies the Unicode character
and the second, the variant; Distiller goes through
all glyph names in all fonts used in a document
and maps glyphs to Unicode characters according
to their names. There is a similar syntax provided
for ligatures (that is: glyphs mapped to more than
one Unicode character).

TrueType fonts have a table (called cmap [7,
pp. 703–706]) dedicated to this mapping: we map
(single) Unicode characters to (single) glyphs.5

These solutions are sub-optimal. There is no
way to modify the mapping between characters and
glyphs without hampering with the font, and this is
not always desirable.

Instead of finding sub-optimal solutions to a
problem which is the consequence of information loss
in the DVI file, let us attack the origin of this prob-
lem. Is it possible to keep character and glyph in-
formation all the way long, from input file to DVI
(and beyond)?

“How now, spirit! whither wander you?”
(Enters Omega1)

One of Omega1’s goals was to achieve Unicode com-
pliance. The least one could expect of Omega1 is
an affirmative answer to the final question of previ-
ous section: Can we obtain Unicode information in
a DVI file?

Before answering that question let us see
whether Omega1 is actually different from TEX
when dealing with characters and glyphs. It isn’t:
Omega1 can read 16-bit characters (some versions
of it can even read UTF-8 representation of Uni-
code data directly), but once inside Omega1, Uni-
code characters become “character tokens” and then
charnodes, ligature nodes and discretionary nodes

5 In fact, things are worse than for PostScript Type 1
fonts: while PostScript glyphs have names (and names are
usually meaningful and stable vs. font trasformations), True-
Type glyphs are accessed by their “glyph index values” which
are plain integers. A TrueType font opened and saved by
some font editing software can be re-organized, glyph index
values can change without further notice, and hence accessing
a glyph directly by its index, without going through the cmap

table, is quite risky.

MOT02 Preprints EuroTEX2005 – Pont-à-Mousson, France

10 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

all the same as in TEX.
How then does Omega1 manage to do Arabic, a

writing system where one just has to go from char-
acters to glyphs? By using OTPs [9]. An OTP is an
internal filter, applied to “character tokens.” It can
be compared to a pre-processor but has some major
advantages: the fact that only tokens are targeted
(not comments, for example), and that the catcode
of each token is known and that transformations
are applied to selected categories only (usually plain
text, that is: catcodes 11 and 12). Furthermore,
OTPs have the tremendous advantage of being dy-
namically activated and de-activated by primitives.

Let us analyse the example of Arabic typeset-
ting via Omega1. When Arabic Unicode characters
are read, they become “character tokens” (the first
part of the token takes the numeric value of the Uni-
code codepoint, the second part is the catcode, in
this case probably 12). No contextual analysis is
done yet. It is an OTP that analyses the context
of each glyph, and, using a finite-state machine, cal-
culates its form; the result of the transformation by
this OTP is one or more new tokens, replacing the
previous ones. These tokens correspond to given
forms of glyphs. Other OTPs will act upon them
and produce esthetic ligatures, and usually the fi-
nal OTP will map these tokens to font-specific ones,
which in turn will become charnodes, and will end
up in the DVI file.

The purpose of keeping only the last OTP font-
dependent is to improve generality and re-usability
of the previous OTPs. But from the moment we
perform contextual analysis we have left Unicode
data behind and are travelling in a no-man’s land
between characters and glyphs. In this de Chirico-
like surreal place, characters are more-or-less “con-
crete” and glyphs more-or-less “abstract.” Obvi-
ously, if the result is satisfying—and this is the case
with Omega1’s Arabic typesetting—it is of no im-
portance how we manage to obtain it, whether we
go through these or those OTPs and in which ways
we transform data.

But the fact is that we do lose character infor-
mation, just as in TEX. In the DVI file we have
beautiful Arabic letters and ligatures . . . but there
is no way back to the original Unicode characters.

This situation is changing with Omega2 (work in
progress). Instead of characters, character tokens
and charnodes we are using signs (sign tokens and
sign nodes), links and bifurcations. Sign nodes are
data structures containing a character, a glyph, and
additional key/value pairs, where the value can be
simple or complex, involving pointers to other signs,

etc. Links are groups of signs which contain alterna-
tive sets of glyphs based on a graph: the paragraph
builder includes this graph into its own acyclic graph
through which it will obtain the optimal paragraph
layout as the shortest path from top to bottom.

Before we enter into the details of signs, let
us briefly describe another paradigm of charac-
ter/glyph model implementation: SVG.

The SVG Paradigm

SVG (= Scalable Vector Graphics, [4]) has at leats
one very nice property: the way text is managed is
quite elegant.

First of all, an SVG document is an XML docu-
ment, and the only textual data it contains is actual
text displayed in the image. In other words: however
complex a graphic may be, all graphical elements
are described solely by element tags, attributes and,
eventually, CDATA blocks. Not a single keyword
will ever appear in textual content.

This is not at all the case of LATEX, where we
are constantly mixing mark up and contents, as in:

Dieser Text ist \textcolor{red}{rot}.

where red is markup and rot is text, and where
there is no way of syntactically distinguishing be-
tween the two. In SVG, this example would be:

<svg:text>

Dieser Text ist

<svg:tspan color="red">rot</svg:tspan>.

</svg:text>

where separation between text and markup is clear.
In SVG, as this is the default for XML, text is

encoded in Unicode. In other words, text is made of
characters only. How then do we obtain glyphs?

As in TEX, SVG uses the notion of “current
font,” attached to each text or tspan element, and
this informations is inherited by all descendant ele-
ments, unless otherwise specified. Fonts can be ex-
ternal, but the model is even more elegant when
fonts are internal.

An internal SVG font is an element called font

containing elements called glyph. The latter has an
attribute called unicode. This attribute contains
the one (or more, in case of a ligature) Unicode char-
acters represented by the glyph.

The contents of the glyph element can be arbi-
trary SVG code (this is quite similar to the concept
of TEX’s virtual fonts, where a glyph can contain an
arbitrary block of DVI instructions). In this way,
any SVG image, however complicated, can become
a single glyph of a font. To include this glyph in
the SVG graphic one only needs to select the font
and ask for the same Unicode character sequence

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

11

as in the unicode attribute of the glyph, in a text

element.
Besides unicode, the glyph element takes a

number of attributes :

• glyph-name: in case we want to access a glyph
directly (useful when we have more than one
variant glyphs representing the same charac-
ter);

• d: the actual outline of the glyph, if we want to
keep it simple and not include arbitrary SVG
graphical constructions as contents of glyph;

• orientation: when mixing horizontal and ver-
tical scripts, how is this glyph oriented?

• arabic-form: initial, medial, isolated or final?

• lang: use this glyph for a number of given lan-
guage codes only;

• horiz-adv-x, horiz-adv-y: the advance vec-
tor of the glyph when typeset horizontally;

• vert-adv-x, vert-adv-y: idem, when typeset
vertically;

• vert-origin-x, vert-origin-y: the origin of
the glyph when typeset vertically.

What happens if we want a specific glyph,
other than the standard one obtained directly go-
ing through Unicode character sequences? We can
use element altGlyph which allows “manual” inser-
tion of glyphs into text, and the PCDATA contents
of which is the Unicode character sequence corre-
sponding to the alternate glyph (in this way we
get, once again, textual data for indexing, search-
ing, etc.). But altGlyph also takes some attributes:

• xlink:href: if the font is described as an SVG
font element, an XLink reference to the cor-
responding glyph element inside the font—our
way of going directly to the glyph, no matter
where it is located: server on the Web, file, font;

• format: the file format of the font (SVG, Open-
Type, etc.);

• glyphRef: a reference to the glyph if the font
format is other than SVG (the specification pro-
vides no additional information, we can reason-
ably assume that this could be the PostScript
glyph name in case of CFF OpenType fonts,
or the glyph index value in case of TrueType-
like fonts, but, as we said already, this is quite
risky);

• x and y: if the alternate glyph is indeed typeset,
then these should be the absolute coordinates
of its origin;

• all usual SVG attributes (style, color, opacity,
conditionality, etc.).

Let us suppose, for example, that we want to
write the word “Omega” with a calligraphic ‘e’ (font
Jolino) described in the element:

<svg:glyph unicode="e" glyph-name="e.joli"

d="... its path ..."/>

We only need to write:

<text>

<tspan font-family="Jolino">

Om<altGlyph

xlink:href="#e.joli">e</altGlyph>ga

</tspan>

</text>

We can conclude by saying that SVG jolly well
separates textual contents from markup (characters
are provided as contents, glyphs as markup), and
that altGlyph element comes quite close to the goal
of our notion of sign: it provides both a character
(in fact, one or more characters), a glyph, and some
additional properties expressed by attributes. These
are not really entirely user-definable as in the case
of sign properties, but one could very well introduce
additional attributes by using other namespaces.

When the Signs Go Marching In

In the remainder of this paper we will describe the
sign concept in more detail and give some examples

of applications. We will use the notation c=0061 a

g=a, 97

for a sign containing character U+0061 latin let-

ter a, glyph “a” (position 97 in the current font),
and no additional properties.

Using this notation, an initial Arabic jeem

would need a sign
c=062C �

form=1
g= �, 18

. If we would like to

typeset this sign in red color, we would add another

property:

c=062C �

form=1
color=red
g= �, 18

.

Here is how it happens: Omega2 reads a file
containing Unicode character U+062C. Tokenisa-

tion produces sign
c=062C �

catcode=12
g=∅

(no glyph for the

moment). Then we go through the OTPs for con-
textual analysis and font re-encoding:

c=062C �

catcode=12
g=∅

1
−→

c=062C �

catcode=12
form=1
g=∅

2
−→

c=062C �

catcode=12
form=1
g= �, 18

The first OTP provides the contextual form
value, without affecting the character (or catcode)
value. The second OTP adds the glyph information
(which would otherwise be added implicitly when

MOT02 Preprints EuroTEX2005 – Pont-à-Mousson, France

12 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

reading the font data).
Now what if we wanted the glyph to be typeset

in red? All depends if we want (a) only the specific
instance of sign to be red, or (b) all jeem characters,
or (c) all initial jeem characters. In the first case one
would manually change the color property of this
sign to value red.6 In the second case one would
use an OTP matching all signs conforming to the

pattern
c=062C �

∗
g= ∗

(where asterisks indicate arbi-

trary values), and would add (or modify the value
of) property color. In the third case one would,
again, use an OTP but this time matching signs con-

forming to the pattern

c=062C �

form=1
∗
g= ∗

. That way only

initial form signs will be catched.
One can also imagine OTP patterns based

solely on properties. If we wanted to change the
color of all red glyphs into green, we would use an
OTP as the following:

c=∗
color=red
∗
g= ∗

→

c=(same)
color=green
(same)
g= (same)

Besides catcode, (Arabic) form and color, one
can imagine many other properties: horizontal and
vertical offset, hyphenation (or hyphenation prefer-
ence), penalty, glue, bidirectionality level, language,
style, word boundary, etc. We will discuss them
while describing selected examples of sign applica-
tions.

Locked Properties Whenever we define rules, we
also need ways to allow exceptions. In our previous
color example, let us suppose that there is a given
sign which has to remain blue, despite all OTPs
which will try to change its color. Properties can

be locked: if

c=�

form=1
color=blue
g= �, 18

becomes

c=�

form=1
k color=blue
g= �, 18

,

then no OTP will ever be able to change this prop-
erty. Of course, OTPs can lock k and unlock L

6 Why should we insert the color information into the
sign as a property, when we can simply use a macro like
\textcolor? Because OTPs use buffers and control sequence
tokens and character tokens of categories other than 11 and
12 will end the buffer and send the buffered text for process-
ing. If the buffer happens to end inside an Arabic word, then
there is no way to do proper contextual analysis since the
OTP cannot know what will follow in the next buffer. The
only way to obtain a sign string sufficiently long to perform
efficient contextual analysis, is to avoid control sequence to-
kens inside Arabic words, and this is easily achieved by storing
information in properties.

properties, so if that color has to be changed after
all, then it can always be unlocked, modified, and
locked again . . .

Signs in Auxiliary Files What’s the use of hav-
ing signs and sign properties if all the information is
lost when tokens are written into a file? For exam-
ple, when signs happen to be in the argument of a
\section command which will be written in a .toc

file. Instead of losing that information we will write
it into that file (which becomes a sign file), and have
Omega2 read it at the subsequent run and import
signs directly.

Sign Documents And since Omega2 reads and
writes auxiliary sign files, why not input the main
file as a sign document? One could imagine a sign-
compliant text editor, a kind of super-Emacs in
which one would attach sign information (charac-
ters, glyphs, predefined or arbitrary properties) to
the TEX code. One can imagine how simple opera-
tions like the verbatim environment would become:
if we can fix the catcode of an entire text block to
12, then all special characters (braces, backslashes,
percents, ampersands, hashes, hats, underlines) lose
their semantics and become ordinary text, LATEX
only needs to switch to a nice typewriter font and
use an \obeylines like command and we’re done.

Such a text editor is nowadays necessary when
we are dealing with OpenType fonts requiring inter-
action with the user. For example, the aalt feature
[7, p. 798] allows choosing variant glyphs for a given
character. It would be much more user-friendly to
use a pop-up menu than writing its glyph index
value in the TEX code. That pop-up menu would
insert the glyph index as a sign property, and bingo.

Explicit Ligatures

To understand how we deal with ligatures let us re-
call how TEX uses them in the first place. When
building the horizontal list (this part of code is called
the chief executive) every charnode is tested for the
presence of eventual ligatures (or kerning pairs) in
the font’s lig/kern program [10, §1035]. If a ligature
is detected then a ligature node is created. There
is a special mechanism to ensure that the created
ligatures is always the longest one (so that we get
‘ffl’ instead of an ‘ff’ followed by an ‘l’).

This ligature node contains a pointer to a hori-
zontal list containing the original charnodes. These
will be used in the paragraph builder if hyphenation
is necessary.

If we need to hyphenate inside a ligature then
it the lignode is first disassembled into the origi-
nal charnodes [10, §898] and then a discretionary

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

13

node is created with the two parts of the ligature as
pre-break and post-break lists [10, §914]. This ap-
proach allows only one possible hyphenation inside a
ligature—as Don says in [10, §904]: “A further com-
plication arises if additional hyphens appear [. . .]
TEX avoids this by simply ignoring the additional
hyphens in such weird cases.” This can be quite an-
noying for ligatures of 4 or more letters containing 2
or even 3 potential hyphenation points, and due to
the increasing popularity of OpenType fonts we will
get more and more of such ligatures in the future.

In TEX a ligature can be inserted only by read-
ing the font lig/kern program. It is impossible to
instruct TEX to create a ligature node using control
sequences or other means, and hence it is equally
impossible to do it in Omega1 using OTPs.

Our goal is to do this in Omega2, using signs.
We call such a ligature an explicit one (in contrast
to implicit ligatures contained in fonts). Let us take
the example of the ‘ffl’ ligature in the word “affligé.”
Let us first suppose that there is no hyphenation
point in this word:

c=a

hyph=0
g=a

c=f

hyph=0
g= f

c=f

hyph=0
g= f

c=l

hyph=0
g= l

c=i

hyph=0
g= i

To insert a ligature one would replace it by:

c=a

hyph=0
g=a

c=f

hyph=0
gdef=f
g=ffl

c=f

hyph=0
gdef=f
g=∅

c=l

hyph=0
gdef=l
g=∅

c=i

hyph=0
g= i

In this string, character information is left un-
touched and the ligature glyph is placed in the first
sign participating to the ligature (the remaining
ones have void glyphs). The gdef properties contain
the “default glyphs,” in case the ligature is broken.

This brings us to a new notion, the one of link. The
sign string shown in the previous example is, in fact,
a doubly linked list. A link is a set of doubly linked
signs, in our case those producing the ligature. We
say that they participate to the link. The reason
for linking these signs is that, at any moment, some
OTP may insert additional signs between the ones
of the link. We have to be sure that when these signs
arrive to the paragraph builder, they will produce a
ligature only if they are still consecutive, otherwise
we will fall back to the default glyphs.

Things get more complicated if there is a hy-
phenation point. In this case we must provide all
possible combinations of ligatured and non-ligatured
glyphs. These combinations form an acyclic graph,
very much like the one of TEX’s paragraph builder,
we call it a set of bifurcations. In the figure below,
we have illustrated a quite complex case: a ligature
‘ffi’ surrounded by letters ‘a’ and ‘i’ and contain-

ing two hyphenation points (after the first and the
second ‘f’ letter), a mission impossible for TEX:

c=a

hyph=0

g=a

c=f

hyph=0

g=ffl

g=f •

g=f

c=f

hyph=0

g=∅

g=f

g=f •

c=l

hyph=0

g=∅

g=l

g=l

c=i

hyph=0

g=a

The fat strokes in the figure are the vertices of the
graph. These vertices will be examined later for
eventual kerning pairs or for other ligatures. The
bullet after a glyph indicates that at this location we
have a mandatory line break.7 Notice that all hyph
properties are now set to 0 since the discretionary
hyphenation is handled “manually” by bifurcation.

Here is the same figure, completed with ‘ff’ and
‘fl’ ligatures which will only be used in cases the
original ‘ffl’ is broken:

c=a

hyph=0

g=a

c=f

hyph=0

g=ffl

g=f •

g=ff

c=f

hyph=0

g=∅

g=fl

g=∅ •

c=l

hyph=0

g=∅

g=∅

g=l

c=i

hyph=0

g=a

Let us not forget that this graph deals only
with glyphs. Characters still form a plain (one-
dimensional) string, and macro expansion will use
signs in exactly the same way as it currently uses
character tokens. The paragraph builder, on the
other hand, will include this graph as a subgraph
of its network for finding the shortest path. Where
we have placed a bullet, the paragraph builder will
consider it as a mandatory end-of-line preceded by
a hyphen glyph.

Non-Standard Hyphenation

Standard hyphenation corresponds to TEX’s \-: the
first part of the word stays on the upper line and
is followed by a hyphen glyph but otherwise un-
changed, and the remaining part is placed on the
lower line, also unchanged.

But “there are more things in heaven and earth,
Horatio.” Typical examples of deviant hyphenation
are German words containing the string ‘ck’ (which,

7 The purpose of this bullet is to postpone until the very

last moment the creation of a sign
c=∅
g= -

followed by a line

break. The user should be able to decide whether character
properties of line break hyphens should be void or U+00AD

soft hyphen, or ant other character.

MOT02 Preprints EuroTEX2005 – Pont-à-Mousson, France

14 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

together with ‘ch’ is a ligature in traditional Ger-
man typography in the sense that glyphs are brought
closer to each other) or Hungarian ‘ssz’ which in
some cases is hyphenated ‘sz-sz’ (ösz-sze) and in
other cases (when the word is composite, like in kis-
szerű) ‘s-sz’.

Obtaining this using bifurcation is very easy:

c=a

hyph=0

g=a

c=c

hyph=0

g=c

pseudo=k •

c=k

hyph=0

g=k

c=e

hyph=0

g=e

The paragraph builder will have to choose between
an unbroken glyph string ‘ack’ and a string ‘ak’ fol-
lowed by a hyphen, a line break, and another ‘k.’
We can insert this information in signs very early, it
will remain alive until the paragraph builder. On the
character level we keep ‘ack’ so that in text extrac-
tion or in conversion to a file format without explicit
line breaks (like XHTML) we will always keep the
regular ‘ack’, whether or not there has been hyphen-
ation in the DVI file.

There are similar phenomena involving punctu-
ation or diacritics: in Polish, when a word is broken
after an explicit hyphen, then we get a hyphen at
the end of line, and another hyphen at line begin.
In Dutch, ‘oe’ is pronounced ‘ou’ unless there is a di-
aeresis on the ‘e’; when a word is broken between ‘o’
and ‘ë’, then the diaeresis disappears (since break-
ing the word at that point makes it clear that the
two letters do not form a diphthong). In Greek we
have exactly the same phenomenon as in Dutch.

It should be interesting to note that this situation
of discrepancy between visual information and text
contents is being taken into account by formats like
PDF. Indeed, version 1.4 of PDF has introduced the
notion of replacement text where one can link a char-
acter string (← the characters) with any part of the
page contents (← the glyphs) [2, p. 872]. The ex-
ample given is the one of German ‘ck’ hyphenation:

(Dru) Tj

/Span

<</ActualText (c) >>

BDC

(k-) Tj

EMC

(ker) ’

The ActualText operator specifies that the
string “c” is a “logical replacement” for the contents
of the BDC/EMC block, which contains precisely the
string “k-.” As we see, using sign properties to keep
this particular information until the DVI file (and

beyond) makes sense since PDF is already prepared
for handling it, and by using it one can enhance
user-interaction with the document.

OpenType Features

OpenType fonts contain information on various
glyph transformations. This works roughly in the
following way: the user activates “features,” for
each feature the font attempts “lookups” (pattern
matching on the glyph string), and for each matched
lookup there is a series of glyph positionings or glyph
substitutions. In our case, activated features be-
come sign properties (so that they can be entered
and modified at any time, independently of macro
expansion, and so that they are carried over when
tokens are stored, moved or written to files), then at
some point, chose by the user, lookups are applied to
sign strings, and the effect of positionings and sub-
stitutions is again translated into sign properties,
before the signs arrive to the paragraph builder.

Both glyph substitution and positioning act on
the glyph part of signs only. Let us review briefly
the different types of OpenType transformations [7,
p. 746–785]:

• single substitution: a glyph is replaced by an-
other glyph. For example, a lowercase letter is
replaced by a small cap one;

c=a

sc=1
g=a

→
c=a

sc=1
g=a

• multiple substitution: a glyph is replaced by
more than one glyphs. For example, we may
want to replace the ideographic square ㎑ by
the glyph string “kHz”:

c=3391 ㎑

g=㎑
→ c=3391 ㎑

g= k
c=∅
g=H

c=∅
g= z

We generate additional signs with empty
character parts so that eventual interaction be-
tween the glyphs of these signs is possible (for
example, they may kern or be involved in some
other OpenType transformation).

• alternate substitution: one chooses among a
certain number of alternate glyphs for a given
sign. The user provides the ordinal of the de-
sired variant glyph as a sign property:

c=&

alt=3
g=&

→
c=&

alt=3
g=&

• ligature substitution: the ordinary ligature.
Once again we have to use glyph-less signs:

c=f

g= f
c=i

g= i
→ c=f

g=fi
c=i

g=∅

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

15

• contextual substitution, chaining contextual
substitution, reverse chaining contextual sub-
stitution: meta-substitutions where one has a
pattern including glyphs before and/or after
the ones we are dealing with, with eventual
backtrack and lookahead glyph sequences, and
sometimes going from end to start;

• single adjustment : this is a transformation that
adjusts the position of a glyph. In TEX, you
can move a glyph horizontally by using \kern

of \hskip commands, and vertically by putting
it in a box and \raise-ing or \lowering that
box. In both cases you lose hyphenation and
kerning, and since control sequence tokens are
involved, OTP buffers are terminated.

This is why we introduce two very impor-
tant sign properties: dx and dy. They pro-
vide horizontal and vertical offsets without go-
ing through control sequence tokens. There is
no boxing, the advance vector of the glyph does
not change, and the effect of moving the glyphs
around does not affect surrounding boxes. In
other words: even if you raise a glyph using dy,
this will not affect your baseline—it is rather
like if you had used a MOVEUP instruction in a
virtual font.

Our favourite example of such a transfor-
mation: the TEX logo (one of the first things
people learn about TEX, since it is described
on page 1 of the TEXbook) becomes a plain
sign string without any control sequence inbe-
tween. Here is the standard TEX code, taken
from plain.tex:

\def\TeX{T\kern-.1667em\lower.5ex%

\hbox{E}\kern-.125emX}

and here is the sign string:

c=T

kern=-.1667em
g=T

c=E

kern=-.125em
dy=-.5ex
g=E

c=X

g=X

(see below for the kern property);

• pair adjustment is like single adjustment, but is
applied to a pattern of two glyphs. Kerning is
the most common case of pair adjustment. Be-
sides dx and dy we also provide kern and vkern

properties for this. The difference with dx and
dy is that the advance vector of the glyph is
modified. To see the difference, here is the TEX
logo first with a kern property and then with a
dx property on sign ‘E’: TEX, TEX;

• cursive attachment is a very interesting trans-
formation: we define a mark (that is a point
in the glyph’s coordinate space) on each side

of a glyph, and we declare that proper type-
setting in this font is achieved when the right
mark of glyph n is identified with left mark of
glyph n+1. This eliminates the need of kerning
pairs (both horizontally and vertically) and is
ideal for cursive fonts with connected letters (as
we used to write on the blackboard in primary
school). We define a property called cursive,
when it is activated Omega2 will first check that
the marks exist in the font, then do the neces-
sary calculations, and finally insert kern and
vkern values to match marks;

• mark to base attachment : the same principle as
cursive attachment, but this time the goal is to
connect a “base” to an “attachment.” Usually
this will be the glyphs of a Unicode base charac-
ter and the one of a combining character. The
simplest example: a letter and an accent. TEX
veterans still remember the headaches caused
to Europeans by the \accent primitive. Since
1990, thanks to the Cork encoding and its fol-
lowers, we have been able to avoid using this
primitive for many languages. But there are
still areas where one cannot predict all possi-
ble letter + accent combinations and draw the
necessary glyphs. To make things worse, Uni-
code compliance requires the ability to combine
any base letter with any accent, and even any
number of accents!

To achieve this, one once again defines marks
on strategical positions around the letter (ac-
cent scan be placed above, beyond, in the cen-
ter, etc., these positions correspond to Uni-
code combining classes) and around the accent.
When the glyph of a combining character fol-
lows the one of a base character, all we need
to do is find the appropriate pair of marks and
identify them, using dx and dy properties. Here
is an example:

c=x

g=x

c=0302 ^

comb=1
g=ˆ

→ c=x

g=x

c=0302 ^

comb=1
dx=-4pt
dy=0.05pt
g=ˆ

and the result is ‘x̂’ (we have deliberately chosen
a letter-accent combination which is used in no
language we know of, so that there is no chance
to find an already designed composite glyph in
any font);

• mark to mark attachment : instead of attaching
the glyph of a combining character to the one
of a base character, we attach it to the one of
another combining character. The method is
strictly the same;

MOT02 Preprints EuroTEX2005 – Pont-à-Mousson, France

16 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

• mark to ligature attachment : same principle
but things get more complicated since a liga-
ture can have more than one marks in the same
combining class and corresponding to individ-
ual letters. The idea is to read a ligature of n

glyphs followed by n combining glyphs and to
place the latter on appropriate locations above
(or more generally, around) the former. This
is rarely encountered in Latin fonts, but be-
comes crucial in Arabic fonts with many lig-
atures (since short vowels and other diacritics
are considered as combining characters by Uni-
code);

• contextual and chaining contextual positioning :
again a meta-transformation where a pattern
of glyphs is matched (with eventually a back-
track and a lookahead) and then one or more
of the previous positioning transformations are
applied. This is crucially missing from TEX.

A typical example is the acronym S.A.V.

(= “Service Après-Vente”), where the ‘V’
should be brought closer to the period pre-
ceding it because the latter is itself preceded
by an ‘A’. In the case of, for example, S.V.V.
(= “Schweizerische Vereinigung für Vegetaris-
mus”) kerning between period and second ‘V’
should better not be applied.

Another example is German word “Würze,”
where, in some fonts with a very expansive ‘W’,
the Umlaut has to be brought closer to the let-
ter to avoid overlapping ‘W’. In this case we
(a) match the pattern of three signs ‘Wu¨’, (b)
place the accent on the ‘u’, and (c) lower it:

c=W

g=W
c=u

g=u
c=0308 ¨

g= ¨

→ c=W

g=W
c=u

g=u

c=0308 ¨

dx=-4pt
dy=0.05pt
g=¨

→ c=W

g=W
c=u

g=u

c=0308 ¨

dx=-4pt
dy=-.55pt
g=¨

Application of transformations contained in GPOS

and GSUB tables will be considered like activating an
OTP, so that the user may insert additional OTPs
between those two, or after them.

Doing Better Than OpenType

Positioning of diacritics on Arabic ligatures [3], or
of Masoretic diacritics in Biblical Hebrew [5] is a
non-trivial task. There are algorithms calculating
positions of diacritics using methods such as force-
fields, blank area calculation, etc. Until now it is

impossible to apply such algorithms without imple-
menting them into the very kernel of TEX.

Using sign OTPs one would first apply con-
textual analysis, then GSUB transformations (and
GPOS for whatever it is worth) and finally, after the
string chain has gone through all OpenType trans-
formations, apply positioning algorithms as exter-
nal OTPs. At that stage we know exactly which
ligatures are used and what the final shape of each
word is. The algorithm would obtain the glyphs of
ligatures and vowels used—as well as special infor-
mation such as the presence of keshideh—from sign
properties. Having access to the glyph contours of
the specific font, it would then reconstruct in mem-
ory an envelope of the global graphical image of the
word, containing visual centers of individual letters
and other relevant information. The result of calcu-
lations would be included in dx and dy properties of
vowel signs. After that, processing would continue
normally.

In fact, our approach not only uses all resources that
OpenType fonts can provide but, contrarily to other
systems which rely on OpenType for the final type-
setting steps, it allows OTP transformations before
GSUB, between GSUB and GPOS and even after GPOS.
And if we want to use OpenType transformations
only partially, we can always lock properties and
hence avoid them to be modified by the font.

Meta-information

For TEX, the only way to include metadata (that is:
information which is not part of the page descrip-
tion) in a DVI file is through the \special primi-
tive. “Specials” are not supposed to interfere with
typesetting, but they actually do: if we write

A\special{blabla}V

there will be no kerning between these two letters.
Which means that if we want to change the color
of letter ‘V’ only, we will lose kerning. In Omega1,
there is a primitive allowing us to avoid this prob-
lem: \ghost (which would emulate the behaviour of
a glyph related to kerning, without actually typeset-
ting the glyph), but this solution is rather clumsy.

Using signs, we can insert the color informa-
tion as a property and then include the necessary
PostScript code for changing color, long after kern-
ing has been applied (kerning, which, by the way, is
also a sign property), or even leave the color prop-
erty in the DVI file and let (sign-compatible) dvips
read that information and write the appropriate PS
code.

One could even define sign properties having no ef-
fect whatsoever on typesetting. For example, in

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

17

Arabic, one could mark the letters alef and lam of
the definite article, or the letter waw of the “and”
particle, as playing these specific grammatical rôles,
so that we can easily distinguish them from letters
alef +lam or waw which just happen to be at the
beginning of a word. The interest of this lies in the
fact that Arabic is not visually separating them from
the following word.

Or, again in Arabic, one could imagine a mor-
phological analyser (acting as an external OTP)
which would give the letters of the Semitic root of
each word a specific sign property. Such letters
would be alkitābu (the book), kutubun (books)
aktubu (I write), etc. This is the kind of infor-
mation which would enormously facilitate searching
and indexing, but which we would like to avoid rep-
resenting visually since it would only obstruct read-
ing.

Characters, Sign Properties or Higher
Order Markup?

In the previous section we have suggested uses
of sign properties which do not affect typesetting.
Most often these can also be achieved by characters
or by higher order markup.

For example, Ω besides being a popular soft-
ware project is also a letter of the Greek alphabet
and the symbol for the SI unit for resistance, named
after its inventor Georg Simon Ohm (1789–1854).
To distinguish between these two uses of the same
symbol, Unicode provides two different characters
(U+03A9 and U+2126). Clearly it would be preferable
to use one of them should to distinguish between
“Omega” and “Ohm,” rather than sign properties
or higher order markup.

We mentioned the possible use of sign prop-
erties for marking the current language. This can
seem practical but also has drawbacks: languages
are nested, even if their nesting is not always com-
patible with the logical structure of the document.
It would be better to use LATEX commands for mark-
ing languages since these commands will not inter-
fere with micro-typography. Indeed, the author can
hardly imagine the need of changing the language
of a word in the very middle of it, so that we in-
cur the danger of losing kerning or hyphenation8).

8 Although, nowadays, people use more and more lan-
guage mixtures, like the notorious French antislash for “back-
slash” . . . In fact, in French one has anglicisms (French words
used with their English meaning, like librairie for [code] li-
brary, etc.), English words that found their way into French
vocabulary (week-end, starlet, etc.), English words that have
been artificially gallisized (débogage ← “debugging,” shunter

← “to shunt”, etc.) and many other levels of interaction
between the two languages. Hyphenation of these words de-

Hence, such properties can, at first sight, very well
be handled by usual higher level markup.

The best possible use of sign properties is for
cases where control sequence tokens would otherwise
interfere with the very fragile operations of microty-
pography and hyphenation.

Glue, Penalty, CJK Languages

Be it fixed or flexible glue, it is now possible, through
sign properties, to add it to glyphs, without affecting
already existing kerning (which would be added to
this glue), ligatures, hyphenation, OTPs that may
match the word, etc.

The typical example is letterspacing: how do
you increase space between letters9 while keeping
hyphenation of the word, f-ligatures, etc.? Before
Omega2, to achieve this, the author was bound to
define special font metrics (with tens of thousands
of kerning pairs). Now it suffices to add a simple
kern property to each sign.

Glue for all glyphs is also required in CJK lan-
guages where there are no blank spaces between
ideographs but where one sometimes needs to shrink
or stretch the contents of a line because of a punc-
tuation mark or a closing delimiter which are not
allowed to be on line begin, or an opening delim-
iter which is not allowed on line end. So, even if
this is not obvious when reading such text, we do
put some glue (with a very small amount of flexibil-
ity) between every pair of ideographs. In Omega1

this is handled by OTPs, but once such an OTP is
used, the ones following it cannot match patterns of
ideographs anymore because of the control sequence
tokens between them. Once more, it is more natural
to systematically add a small amount of glue to each
ideograph, using a sign property.

Adding glue to every ideograph is a good thing,
but how do we avoid lines starting with punctuation
or closing delimiters?

If we can add glue to signs, why not penalties?
In that way the space between an ideograph and a
punctuation mark or a delimiter will be exactly the
same as for all other ideographs, but using an infinite
penalty value, line breaking will be prohibited at
that point.10 Here is an example of some ideographs

pends on their level of French-ness, which can vary temporally
and geographically.

9 Cave canem! Letterspaced typesetting should be at-
tached to specific semantics and should never be done for
justification reasons only, otherwise it is like stealing sheeps.

10 We don’t have that problem in Latin typography be-
cause line breaking is allowed only at glue nodes (that is,
mostly between words) and inside words using hyphenation—
but a punctuation mark has no lc code and hence cannot be
matched by a hyphenation pattern.

MOT02 Preprints EuroTEX2005 – Pont-à-Mousson, France

18 Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

and the corresponding values of glue and penalty (as
used by the author):

c=9019 這

glue=0pt
stretch=.025em
g=這

c=672C 本

glue=0pt
stretch=.025em
penalty=10000
g=本

c=3002 。

glue=0pt
stretch=.025em
g=。

to obtain: 這本。

Glue vs. the “Space Character”

It is well known to us TEX users, that TEX (and thus
also DVI) has its own philosophy about how words
are separated, namely by glue. The DVI page is
like a sea of glue in which glyphs navigate and give
the impression of forming words by getting closer to
each other. But this is only illusion. In DVI there
is no way of distinguishing between, for example,
inter-word space and kerning. It is the human eye
that deciphers spaces between some letters as be-
ing word separators (and the narrower these spaces
are, the more difficult is reading). In other markup
or typesetting systems, things are different. Uni-
code defines character U+0020 space as well as a
dozen other “whitespace characters.” Some of them
are extensible and others of fixed width. PostScript
uses a mixed approach: when the glyph of the space
character has the right width, it is used in strings;
when a different width is needed, due to justifica-
tion, PostScript uses horizontal skips, similar to DVI
ones. But in PDF space characters must be present,
since people may copy-paste text into other appli-
cations: they would be quite surprised to find blank
spaces are missing . . .

To be able to distinguish glue produced by in-
terword space from glue entered explicitly, we use a
sign for interword glue. This sign has a character
part which is one of the Unicode whitespace char-
acters and a blank glyph part. “Blank” is not the
same as “void”: this sign has indeed a glyph, which
can therefore be matched by OpenType lookups, but
this glyph has no contour and its advance vector can
vary.

Using this approach, not only can OpenType
lookups match whitespace glyphs but we can also
produce adequate PDF, SVG and XHTML code (for
example: in XHTML, interletter kerning should be
ignored but interword spaces must be kept in form
of Unicode whitespace characters).

Conclusion and Caveats

Work described in this paper is experimental. In
other words: what we present here is the latest sta-
tus of our investigations and experimentations, in
the frame of the research project INEDIT of ENST

Bretagne. Our goal is to provide a new microty-
pographical model for typesetting (different from
the node-model of TEX) which will be Unicode- and
OpenType-compliant, which will provide more con-
trol to the user than any Unicode or OpenType-
compliant application, and which will produce doc-
uments with sufficient information to be converted
into any present or future electronic document file
format.

There is a discussion list omega@tug.org hosted
by TUG and dedicated to this project. To subscribe,
please visit:

http://tug.org/mailman/listinfo/omega

References

[1] Adobe Systems. Unicode and glyph names,
2003.

[2] Adobe Systems. PDF Reference: Version 1.6.
Addison-Wesley, 5th edition, 2004.

[3] Gábor Bella. An automatic mark positioning
system for Arabic and Hebrew scripts. Master’s
thesis, ENST Bretagne, Octobre 2003.

[4] Jon Ferraiolo, Jun Fujisawa, and Dean Jack-
son (eds.). Scalable Vector Graphics (SVG) 1.1
Specification. W3C, 2003.

[5] Yannis Haralambous. Tiqwah, a typesetting
system for biblical Hebrew, based on TEX.
In Actes du Quatrième Colloque International
Bible et Informatique, Amsterdam, 1994, pages
445–470, 1994.

[6] Yannis Haralambous. Unicode et typographie :
un amour impossible. Document Numérique,
6(3-4):105–137, 2002.

[7] Yannis Haralambous. Fontes & codages.
O’Reilly France, 2004.

[8] Yannis Haralambous. Voyage au centre de
TEX : composition, paragraphage, césure.
Cahiers GUTenberg, 44-45:3–53, Nov 2004.

[9] Yannis Haralambous and John Plaice. Methods
for processing languages with Ω. In Proceedings
of the International Symposium on Multilingual
Information Processing, Tsukuba 1997, pages
115–128. ETL Japan, 1997.

[10] Donald E. Knuth. TEX: The Program, vol-
ume B of Computers and Typesetting. Addi-
son-Wesley, Reading, MA, USA, 1986.

[11] Ferdinand de Saussure. Cours de linguistique
générale. Payot & Rivages, 1916, facsimilé de
1995.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT02

Omega Becomes a Sign Processor
Yannis Haralambous, Gábor Bella

19

A Taxonomy of Automated Typesetting Systems

Chris Rowley
Faculty of Mathematics and Computing

The Open University, UK

Joachim Schrod
J. Schrod Net & Publication Consultance GmbH

Rödermark, Germany

Christine Detig
J. Schrod Net & Publication Consultance GmbH

Rödermark, Germany

February 21, 2005

Abstract

A long-standing goal is a formal framework and formal description of
automated typesetting systems, to capture their functionality and prop-
erties in a precise way. As a first step towards that goal, we build a
taxonomy for various properties of typesetting systems, both existing and
potential.

This taxonomy both establishs a vocabulary and classifies that vocab-
ulary. The vocabulary allows to describe key points and discriminators of
automated typesetting systems. Through the classification scheme, we are
able to identify and capture the central features of each system, ranging
from input and output capabilities to interfaces and models.

The classification is multi-layered; top-level categories are Format-
ting Model, Document Representations, Graphics, Font Support, Colour
& Painting, and Style Sheets. This implies that we do not use a clas-
sic tree structure for the taxonomy, leading to a unique position of a
typesetting system in the taxonomy tree. Instead, we use a hierarchical
cross-classification in which each system can be associated with multiple
properties within layers. Selection of properties is guided by the intended
use or architecture of the system, not by optional fringe usages and ad
hoc extensions.

The taxonomy targets only text typesetting, though for a wide range
of natural languages and cultural conventions. Non-classical typesetting,
e.g., for screen, interactivity, multimedia, is not covered; neither are asso-
ciated document processing or management tasks like multi-channel out-
put, indexing, bibliography, version control, editing support, digital rights
management, and others.

This taxonomic activity both derives from and enables the analysis of
computing systems and thus provides both a vocabulary and a forum for
discussing and evaluating current and future developments in the area.

MOT03 Preprints EuroTEX2005 – Pont-à-Mousson, France

20 A Taxonomy of Automated Typesetting Systems
Joachim Schrod, Chris Rowley, Christine Detig

Designing an implementation language for a TEX successor

David Kastrup∗

February 27, 2005

Abstract

Managing the complexity of TEX’s codebase is an arduous task, so arduous that few mortals can hope
to manage the underlying complexity. Its original author’s computational roots date back to a time where
the maturity and expressive power of existing programming languages was such that he chose to employ
the assembly language of a fictional processor for the examples in his seminal work “The Art of Computer
Programming”. In a similar vein, TEX is written in a stripped-down subset of a now-extinct Pascal dialect.
Current adaptations of the code base include more or less literal translations into Java (NTS and exTeX),
C++ (the Omega-2.0 codebase), mechanically generated C (web2c) and a few others. In practically all
currently available cases, the data structures and control flow and overall program structure mimick the
original program to a degree that again requires the resourcefulness of a highly skilled programmer to
manage its complexity. As a result, almost all of those projects have turned out to be basically single-person
projects, and few projects have shown significant progress beyond providing an imitation of TEX.

It is the persuasion of the author that progressing significantly beyond the state of the art as represented by
TEX will require the expressiveness and ease of use of a tailor-made implementation and extension language.
Even a language as thwarted as Emacs Lisp has, due to its conciseness, rapid prototyping nature, extensibility
and custom data types and its coevolution with the Emacs editor itself, enabled progress and add-ons reaching
far beyond the original state as conceived by its original authors. This talk tries to answer the question what
basic features an implementation platform and language for future typesetting needs should possess.

1 Problems of TEX
Managable problems

• Simplest measures such as \boxstretch, \boxfilstretch, \boxshrink etc are not available.

• Boxes can’t reliably be deconstructed (\special, single characterse etc. can’t be removed, boxes can only
be taken apart from the end)

• Variables that TEX employs for decisions are partly unavailable (in some cases because of system-dependent
rounding)

• Peculiarities like the loss of the first line’s baseline (for \vtop) by whatsits, \splittopskip0pt and other.

Problems of the macro language

• Only global register pools indexed by number are available. There are no lexically local variables, the
grouping structure does not match the macro structure.

• macro arguments get \catcodetoo soon, complex patterns are not easily parseable. Maybe \lazy\defwould
help?

• Implementing regular input languages is hard.
∗dak@gnu.org

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT04

Designing an Implementation Language for a TEX Successor
David Kastrup

21

Interoperation problems
TEX

• only knows its own font formats, metrics and ligatures.

• does not talk to graphic programs

• can’t trigger reformatting of external material.

Algorithmic problems

• TEX is either perfect, or deficient: paragraphs are optimized globally, but the vertical breaks are “local
best fit” without feedback to horizontal breaks or future pages.

• TEX has no sane concept for asynchronous user code. \output is shielded with the expedient of additional
grouping and has no multithreading concept.

• TEX has no possibilities for making use of side-effect free user-defined code. Consequently, user-defined
code can’t be used in several speculative contexts.

2 Document examples

2.1 Line numbers
Task at hand

If your ultimate goal is to produce a set of files in a different format that can be produced by GhostScript, take a
look at the tightpage option of the preview package. This will embed the page dimensions into the PostScript
code, obliterating the need to use the -E -i options to Dvips. You can then produce all image files with a single
run of GhostScript from a single PostScript file for all images at once. The tightpage option requires setting
the dvips option as well.

1

2

3

4

5

Various options exist that will pass TEX dimensions and other information about the respective shipped out
material (including descender size) into the log file, where external applications might make use of it.

1

2

The possibility for generating a whole set of graphics with a single run of LATEX, Dvips, and GhostScript increases
both speed and robustness of applications. It is to be hoped that applications like LATEX2HTML will be able to
make use of this package in future.

1

2

3

1

Current line number implementations
Implementation with lineno.sty:

1. Replaces all interline penalties with forced page breaks.

2. This triggers a special output routine placed before the principal output routine.

3. This special routine places the line numbers and reinserts the correct penalties.

4. The normal Output routine is called.

5. A label-like multipass mechanism resets line numbers at the start of the page.

What would be saner for line numbering?

1. For migrating boxes into the main vertical list, a special “context” is defined that assembles a parallel
column of ‘unfinished’ line numbers.

2. The unfinished objects take up constant dimensions and will be translated into glyphs either in the context
of the output routine or at shipout time, since then the page start is known.

3. Consequently, a multipass algorithm is not necessary.

4. In the same context \label-commands referencing line numbers are expanded.

MOT04 Preprints EuroTEX2005 – Pont-à-Mousson, France

22 Designing an Implementation Language for a TEX Successor
David Kastrup

2.2 More complex Problems
Synchronized texts. . .

Footnotes in running paragraphs

ösen Neigungen zusammen.d Methodisch bedeutsam ist abere wieder die Ge-
winnung des Endpunktes <für die Gegenwart>. Dieserf muß in einer absoluten
und endgültigen Synthese liegen, die eben deshalb nicht aus der natürlichen<,
ihrem Wesen nach relativistischen> Lebensbewegung gstammen oder hervor-

a In A folgt: wesentlich b A: Staatsorganismen,
c–c A: zukünftige und gegenwärtige

d–d A: Dass er dabei materiell zu einer sehr konservativen, mittelalterlich ständisch
gefärbten und zugleich wieder real-politisch und national gesinnten Staatsauffas-
sung kommt, ist eine Sache für sich. Auch dass die Konstruktion der Entwick-
lung, die im Grunde immer nur mit einem sehr biologisch getönten Lebensbe-
griffe arbeitet, kein logisches Fortschrittsprinzip hat, sondern an dessen Stelle
sich auf die Vorsehung beruft, ist eine der besonderen Ausführungen des Grund-
gedankens. Es gibt hier nicht viel mehr als Spielereien mit völlig unzulänglichen
historischen Kenntnissen.

e A: erst f A: Er
g–g A: mit ihrem unaustilglichen Realismus und Relativismus stammen könne

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT04

Designing an Implementation Language for a TEX Successor
David Kastrup

23

Nested footnotes

<dabei> ist, daß alles das immer nur Einzelentwicklungskreise sindb und daß
der Fortgang zu einer universalen Verknüpfung all dieser Kreise mit dieser Me-

en und Konsequenzen recht interessant, ganz abgesehen von ihrem materiellen Inhalt.
Hier über das Problem der Geschichtsphilosophie und des Entwicklungsbegriffes Bd.
I S. V und c97. Derc alles durchdringende Bewegungsbegriff I 5, 49 f., 30, 179, 251.
Universalgeschichte und Vorsehung <I> 79, 147, 95 f. Zusammenfassung von Smith,
Montesquieu und Burke <I> 86. Mangel eines archimedischen Punktes <für Natur und
(offenbarungslose) Geschichte I> 35 f. Die Tendenz des Ganzen dIII 328: „Den Staat
ideenweise (d. h. als Synthese aus Gegensätzen und intuitiv) begreifen heißt ihn für die
Gegenwart beseelen, beleben, mit Religion tränken.“d 120 <Damit ist auch hier der Zu-
sammenhang der Historie und der gegenwärtigen Kultursynthese scharf behauptet.>

Die Ablösung Burkes durch De Bonald, Verm. Schriftene I 311 ff. Wichtig und in-
teressant istf der „Briefwechsel mit Gentz <1800–1829“, Stuttgart 1857. – Außerdem
hat mir eine lehrreiche Berliner Dissertation von Georg Strauß über „Die Methode A.
Müllers in der Kritik des 19. und 20. Jahrhunderts“121 vorgelegen>.

a–a A: Romantiker hat dann weiterhin in die Ferne geführt, indische, persische, spani-
sche, französische, englische Geschichte und Geistesentwicklung den Forschern
als Gegenstände unterbreitet. Es ist hier nicht möglich, all dem ins einzelne zu
folgen und ebenso unmöglich, die mannigfachen Fortwirkungen H. W. Riehl
und Gustav Freytag, bis Radowitz und Gierke, Roscher und Knies, Heinrich Leo
und Stahl, Boisserée und Schnaase usw. zu schildern, wobei das Hauptinteresse
in den jeweiligen Modifikationen läge.

b A: sind, c–c A: 97; der
d–d A: III, 322. Den „Staat ideenweise zu begreifen“ heisst ihn für die Gegenwart

„beleben, beseelen, mit Religion tränken.“
e A: Schr. f In A folgt: auch

120 Vgl. Adam Müller: Elemente der Staatskunst, Dritter Theil (1809), S. 238: „Erin-
nern Sie sich aber, daß es die Grundbestrebung war, den gesammten Staat und al-
le seine Institute ideenweise zu ergreifen – d. h. ihn zu beleben, zu beseelen, mit
Religion zu tränken.“

MOT04 Preprints EuroTEX2005 – Pont-à-Mousson, France

24 Designing an Implementation Language for a TEX Successor
David Kastrup

Tough stuff. . .

3 Concepts
Contexts

• A context is a programmatic entity with its own control flow and local variables.

• Example: an output context continuously requests material from the main vertical list and insertions.
Collections of page matter are then scored (currently this happens using \brokenpenalty, \widowpenalty,
\clubpenalty, \badness and others).

• The output context thus is coupled with the migration of page material from the vertical list to the current
page.

• Other contexts may be coupled with other migrations.

• For example, a color context would have the current color as a local variable for material migrating to the
page and into insertions.

Migrations

• Actions get triggered when objects of a class migrate from one list to another.

• Migrations can be penalized.

• When different migrations are possible, the combination with the smallest total penalties survives.

• Line breaking is a special example of penalized breakpoints during the migration of a horizontal into a
vertical list.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT04

Designing an Implementation Language for a TEX Successor
David Kastrup

25

Objects

• are elements of the various horizontal and vertical lists.

• can belong to different classes.

• classes can be added as well as extended.

• objects can have their own contexts for particular migrations.

Optimization

Global optimization leads to combinatorical explosion of run time. Countermeasures:
1. reduction of interdependencies by separated contexts

2. serialization by tying the optimization to migrations

3. limited backfeed, preferring multiple passes.

4. make do with less than full optimization.

Disadvantages

• higher memory impact since decisions need to remain revertible to some degree.

• higher computational resources because of backtracking

• quite a bit of potential for infinite or almost infinite loops and calculations.

• Programming a full TEX clone on such a platform appears possible, but pointless.

• Decomposition or analysis of several variants can be expensive.

Implementation language

• should offer natural expressivity for lists, TEX-typical strings and token lists.

• should make the required mechanism natively available.

• automatic garbage collection.

• need not be a single layer: instead of TEX’s Pascal/TEX-macro layering a more tiered concept
C/Scheme/TEX-core/TEX-Macros would be possible.

• Problematic: Coroutines. Smalltalk? Ada?

• Problematic: I/O (memory for tentative I/O)?

• Combination with low-level languages like C desirable.

• Low-level implementation of fast algorithms on custom data structures should be possible

• Avoidance of unnecessary language features.

like

MOT04 Preprints EuroTEX2005 – Pont-à-Mousson, France

26 Designing an Implementation Language for a TEX Successor
David Kastrup

CTAN Plans

Jim Hefferon

February 26, 2005

Abstract

CTAN isn’t good enough: it needs to change!

It was originally conceived of as an FTP archive, at a time when people using it were typically system
managers or advanced users. But today most people have TeX on a personal system, using one of the
distributions, and do the maintenance themselves, relying on the web to find information.

In response, CTAN needs to make it easier to find materials, especially using web methods, and to
interface with distributions.

DANTE has sponsored meetings between the core maintainers, distribution developers, and others, to
discuss how to move forward. This is a progress report; it supplements the article of the same name recently
published in several TEX journals.1

For the first need, to make CTAN more usable by non-experts, we must make the system more
information-rich by including metadata. I will demonstrate the value of metadata – some of the uses to
which we can put it to make the life of both CTAN visitors and maintainers easier.

But maintenance of this metadata cannot become just another task, as enthusiasm will inevitably fall
off. I will demonstrate some of the efforts to make the metadata easier to maintain. This demo will show a
web interface now being tested.

Finally, I will briefly discuss the status of the second need, interfacing with distributions.

1See for instance http://www.tug.org/TUGboat/Articles/tb24-2/tb77heff.pdf

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT05

CTAN Plans
Jim Hefferon

27

MP2GL: prototyping 3D objects with Metapost

Denis Roegel

February 25, 2005

Abstract

Metapost was created with 2D graphics in mind, and in spite of various extensions created during the
last few years, it doesn’t seem well adapted for 3D technical graphics. However, there are cases where simple
but realistic 3D graphics are needed, for instance for inclusion in an article, and there are also cases where
3D objects are mere 2D objects with added depth. In such cases, an approach combining metapost with an
OpenGL environment proves very interesting and allows for interesting effects. It is also a smooth way to
get introduced to OpenGL. MP2GL is our first attempt towards this direction.

MOT06 Preprints EuroTEX2005 – Pont-à-Mousson, France

28 MP2GL: prototyping 3D objects with Metapost
Denis Roegel

MetaPost Developments

Taco Hoekwater,
taco@elvenkind.com

The MetaPost system (by John Hobby) implements a picture-drawing language very much like
that of MetaFont except that it outputs Encapsulated PostScript files instead of run-length-encoded
bitmaps. MetaPost is a powerful language for producing figures for documents to be printed on
PostScript printers, either directly or embedded in TEX documents. It includes facilities for directly
integrating TEX text and mathematics with the graphics.

The version number of the MetaPost executable is still well below the 1.0 mark (0.641 is current),
but not much has happened in recent years. This situation is far from satisfactory, especially since a
fairly large number of bugs are known to exist at this date, but John Hobby simply could not find the
time to solve these bugs, let alone handle feature requests.

Resulting from a renewed community interest in MetaPost, last summer a small group of people
have made a proposal to Hobby for the creation of a special development group that would take care
of the development of MetaPost from then on. Luckily, he agreed, on the condition that he will only
allow tested code to be inserted into the MetaPost distribution. Among the currently active group are
the following people:

• Karl Berry

• Giuseppe Bilotta

• Hans Hagen

• Taco Hoekwater

• Bogus lav Jackowski

Karl Berry has created a homepage on the TUG server for MetaPost

• http://www.tug.org/metapost

He also created a mailinglist for discussions and questions. Details can be found at

• http://www.tug.org/mailman/listinfo/metapost

Taco Hoekwater has set up a project at Sarovar that hosts a source repository as well as a bug /
feature request tracker

• http://www.sarovar.org/projects/metapost

The MetaPost manuals (mpman and mpgraph) have recently been released under a BSD-ish license.
Dylan Thurston at Debian converted the sources to LATEX, and in the future they will become a
standard part of the distribution.

As of today, the known errors in the documentation have been removed, and a number of bugs
have already been fixed in the repository. More bugs will be fixed in the near future, and the group
hopes that a new bugfix release will be available around EuroTEX 2005.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT07

Metapost Developments
Taco Hoekwater

29

Verbatim phrases and listings in LATEX

Péter Szabó 〈pts@fazekas.hu〉 ∗

Budapest University of Technology and Ecomomics,
Department of Analysis,
Műegyetem rakpart 3–9.,

Budapest, Hungary H-1111

2004-11-11

Abstract

The examplep package written by the author recently provides sophisticated features for typesetting
verbatim source code listings, including the display of the source code and its compiled LATEX or METAPOST
output side-by-side, with automatic width detection and enabled page breaks (in the source), without the
need for specifying the source twice. Special care is taken so section, page and footnote numbers do not
interfere with the main document. For typesetting short verbatim phrases, a replacement for the \verb
command is also provided in the package, which can be used inside tables and moving arguments such as
footnotes and section titles. The listings package is used for syntax highlighting.

The article reviews the design decisions made during the package development and also presents some in-
teresting implementation internals. examplep is compared to standard LATEX packages such as listings, ltxdoc,
sverb and moreverb. The new codep package and its accomanying Perl script, which provide a convenient
interface to the examplep package for authors of manuals, is also presented. With codep it is possible to
generate the source code, the LATEX or METAPOST output and the compilable example file onto the CD
from a single source embedded into the appropriate place of the .tex document file.

1 Terminology
verbatim text A visually distinguishable textual part of the document (usually typeset with a monospaced,

or typewriter font) that is allowed to contain the full ASCII character set. Verbatim text is often used
to typeset parts of program source files, including TEX source. Verbatim text must be marked up (i.e.
surrounded) in the source of the LATEX document, so backslash and other control characters are typeset
verbatim instead of being interpreted as commands or special LATEX characters.

inline verbatim A verbatim text passage inside a paragraph or table cell.

display verbatim is a vertical verbatim text block between paragraphs.

side-by-side display When typesetting program source in a display verbatim, it is often desirable to show the
output of the program as well. This is especially useful when teaching scripting languages, so the reader
can see the command and its effect side-by-side in a quick glance. For TEX or METAPOST sources and
EPS and PDF source files it is also useful to see the source and the typeset result side-by-side.

Source and Sample Side-by-side displays can be divided to Source and Sample, the latter being program
output or typeset material.

CD-files Files accompanying a book, usually on a CD or DVD shipped with the book, or avalable for download
on the home page of the book. These files usually contain some of the display verbatim material in the
book, so readers do not have to retype them.

∗Thanks to Ferenc Wettl for the fruitful long discussion about the line syntax of the code environment, and also for reviewing
the article.

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

30 Verbatim Phrases and Listings in LATEX
Péter Szabó

2 Special characters in the LATEX source
The special meaning of the input characters in the source file must be disabled in verbatim mode – except for
the character(s) that delimit the end of the verbatim text. The following characters have to be dealt with:

ASCII symbols The ligatures have to be disabled, especially ?‘→ ¿ etc. The safest way is to make both char-
acters of such a ligature active, and defining \def?{\relax\string?\relax} and \def‘{\relax\string‘
\relax}. examplep issues similar definitions covering all such ligatures in the OT1- and T1-encoded CM
fonts.

ASCII letters Most verbatim fonts don’t contain the “fi” or similar ligatures, so examplep takes no care to
disable them.

special TEX source symbols To disable the special meaning of the symbols \ { } $ % ^ & _, examplep
redefines their \catcode for display verbatim. However, catcode changes are not always appriopriate for
inline verbatim, so examplep provides \÷ (see below) which doesn’t change catcodes at all.

other ASCII punctuation Some of these characters ([] ; ’ , . / ~ ! @ * () + | : " < > ? ‘ - =) may be
active, for example, ~ is ÷ ÷, ‘ is a Babel shorthand (e.g. in the Hungarian language module, magyar.ldf);
" is a Babel shorthand (e.g in the German language module); ?, !, : and ; are activated (e.g. by the
French language module), and other characters may be activated, too. So examplep sets the catcode of
all characters in the range 33 . . . 126 to other (12). This includes all ASCII punctuation, letter and digit
characters.

double carets For example, the letter “J” can be input as its ASCII code in hex, prefixed by double carets:
^^4a. However, in verbatim mode we want the 4 characters, not the letter J. There is no problem in
inline verbatim mode, because ^ loses its special meaning once its catcode is changed. However, when
the verbatim material is written to a file or to the terminal, TEX may change “unprintable” characters to
escapes prefixed by ^^. These changes must be reverted when reading the file back. See Subsection 7.2
for more.

high characters Input characters in the range 128 . . . 255 are usually activated by the inputenc package, and
they know how to typeset themselves – so examplep leaves the catcode of such characters intact. However,
in some modes, examplep has already changed all catcodes to 12 and 10 (with \meaning), so it has to
change the catcodes of such high codes back to 13 (active).

3 Features of examplep
These are the most important, unique features:

• layout of side-by-side display may depend on maximum Source width

• automatic hyphenation of inline verbatim. The text is divided into words and punctuation symbols (based
on catcodes). For words, the normal TEX hyphenation patterns apply, and it is allowed to break the line
on both sides of a punctuation symbol.

• customizable isolation of page, section etc. numbers in the Sample and the host document with the
PexaMiniPage environment

• besides the outer level, inline verbatim (when properly escaped inside \Q or \÷) works safely inside macro
arguments, section titles, footnotes, table cells and index entries

• generated CD-files with automatic page and chapter number

• writing verbatim data to CD-files with a Perl script; exact, binary reproduction of verbatim text is guar-
anteed

• ability to write different material to Source, Sample and CD-files

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

31

Table 1: Contexts and features of inline verbatim commands

outer argument tablular elsewhere escaped

\verb + −1 + −1 no
\PVerbOpt + +2 + − no
÷ + +2 − +2 no
\÷ + + + + yes
\Q + + + + yes

1sometimes displays the proper error message
2inner mode only (spaces compressed or lost, % is comment etc.)

• the accents \H and \. work as expected with monospaced fonts in the OT1 encoding. By default,
\texttt{\H o} produces }o in OT1 encoding, because such typewriter fonts (such as cmtt10) have those
accents replaced by ASCII symbols. examplep solves the problem by getting the accent from the cmr font
family.

Some other features:

• side-by-side display of the Source and the Sample

• between-word hypenation of inline verbatim

• customizable left and right indentation of display verbatim

• specifying inline verbatim with nested braces (\PVerb, \Q) or terminating character (\PVerb, ÷, \÷)

• automatic line breaks with hyphenation in display verbatim

• the discretionary hyphen (\hyphenchar) of verbatim text is different from the one in normal text

• line numbering in display verbatim

• writing to temporary files only if needed

• reading back contents of any file in display verbatim

• inline verbatim with a single character (÷) and its escaped version (\÷ and \Q)

• automatic \indent/\noindent, based on empty line above \begin{...}

• ISO Latin accented input character support in all modes (also present in \verb)

• support for syntax highlighting with the listings package [1]

• emits a tab as eight spaces in normal mode, but tabs are supported properly with ttlistings=yes and
ttlistings=showtabs

• simple side-by-side display emulation without temporary files, using srcstyle=leftboth or
srcstyle=leftleft

3.1 Escaped mode of inline verbatim locations
For compatibility reasons, examplep doesn’t change the original \verb and \verb* commands in any way, but
defines its own commands: \PVerb, \PVerbH, \PVerbInner, \PVerbOpt, \Q, ÷ and \÷. Most of the \PVerb. . .
commands are historical. For new documents, only the use of \PVerbOpt, \Q, ÷ and \÷ is recommended. Some
of these commands have to be activated with package load options:
\usepackage[Q=yes,div=yes,bsdiv=yes]{examplep}. The reason why ÷ was introduced is that it is a high
Latin-1 (and Latin-2) character available on the Hungarian keyboard, which is usually not used in LATEX
documents (in fact, \div is used instead). Inline verbatim sources with such a character are compact, and
they can contain all ASCII symbols.

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

32 Verbatim Phrases and Listings in LATEX
Péter Szabó

examplep supports inline verbatim text at the outer level, inside macro arguments, in table cells and elsewhere
(in section titles, in footnotes and in index entries), see also in Table 1. The reason why some of these cases
are treated differently is that catcode changes must be timed correctly so that the proper catcodes are active
by the time TEX reads the verbatim text from the input file for the first time. (Please note that section titles
and index entries are also written to and read back from auxilary files.)

This is quite hard to accomplish in several cases (because TEX’s mouth gathers macro arguments at high
speed, a way before TEX’s stomach could change the catcodes), so examplep provides the commands ÷ and \Q,
which do not change catcodes at all, so they work everywhere. Each special (say, not alphanumeric) character
of the source text of these commands must be prefixed by a backslash, so TEX’s eyes will see it as a controls
sequence token. The backslashes are retained when the construct is written to auxilary files, but they get
removed upon typesetting. Letters, when prefixed by a backslash, get special meaning, for example \V denotes
a visible space. For example, The construct \÷\\\}÷ is seen by TEX’s eyes as \÷13\\13\}13÷13, and its gets
typeset as \} (by running the command \÷). Please note that the construct is properly nested, because all
braces are inside control sequence names. The same result (\}) can be achieved with \Q{\\\}}. Both constructs
are safe, because they can be freely moved to anywhere in the source file. However, for compatibility reasons,
\Q is recommended, because its execution doesn’t rely on the current catcode of the terminating ÷ of \÷. A
more complicated example: ‘‘\Q{\\\V X\ }’’ gets typeset as “\␣X ”. In escaped mode, \V dentoes a visible,
unbreakable space, \S and \␣ denote default space (affected by the pverb-space= option), \B allows a line break
there with a discreationary hyphen (affected by the pverb-linebreak= option), and \n flushes left and starts
a new line.

The \PVerb macros can detect whether they have been invoked from within a macro argument. If so, they do
not insist on catcode changes, but they emit all the tokens that has been seen by TEX’s eyes. (Spaces are already
compressed now, and everything after % is ignored etc., so this is not purely verbatim anymore.) However, this
works only if the macro argument is properly nested with respect to braces, and it is delimited by braces (not
a terminator character).

Please note that there might be problems with verbatim material in index entries processed by makeindex if
characters ", @, ! and | are not quoted properly with ". This is a generic makeindex issue. The quoting must
be applied even inside verbatim material.

3.2 Horizontal alignment of the Source lines
The verbatim environment of standard LATEX reads the whole verbatim text into a macro argument, thus
limiting the length of the verbatim material to the available main memory. This is enough for about 3400 80-
character lines. The verbatim, moreverb, listings and examplep packages parse the input line-by-line, so there is no
such limit. However, with examplep, additional memory is required for aligned mode, which limits the maximum
number of lines to about 2200 (32 pages) when the average line width is 80 characters. Please note that the
maximums mentioned here may be lower if more packages are loaded; in another situatian the maximum number
of lines was 375. As a reference, a plain \halign with all lines having (9999)\hfil\cr only could accomodate
about 5000 lines when no packages were loaded. The maximum memory can be increased by increasing the
extra_mem_bot variable in texmf.cnf or in the environment.

There are two display modes used for display verbatim: paragraph and aligned (see the \pexa@show@pars
and \pexa@show@halign macros, respectively, in the source). Aligned mode is used when multiple columns (such
as line numbers and text) have to be aligned horizontally. Aligned mode uses the TEX \halign primitive to do
the alignment, and this primitive reads the whole construct into memory before typesetting it (in order to be
able to calculate the column widths). The other one, paragraph mode, is used when horizontal alignment is not
needed and side-by-side display is not used. In paragraph mode, each line is typeset as a seperate paragraph,
so the length of the verbatim text is only limited by the available disk space to hold the resulting DVI file.
examplep chooses the mode automatically: for side-by-side display it always chooses aligned mode (so it can
measure the width of the Source before typesetting it), otherwise, if the srcstyle= makes it possible, it chooses
paragraph mode, otherwise it chooses aligned mode. See Figure 1 for details about Source styles.

Please note that the Source styles leftboth and leftbothnumcol display each line twice, as Source and as
Sample, too. This is different from regular side-by-side display, because lines of the Source and Sample here are
forcibly aligned, and this solution doesn’t use a temporary file. The source style leftleft is similar, but it lefts
the author specify different Source and Sample for the same line (they should be separated by & in the source).

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

33

srcstyle=left PAF
9srcstyle=leftnumhang PAF
9srcstyle=leftnum PAF
9srcstyle=leftnumcol AF when the last page number has 2 digits

srcstyle=center PAF
srcstyle=right PAF

srcstyle=paralign PF with source-par-align=justjust
srcstyle=leftboth srcstyle=leftboth A
9srcstyle=leftbothnumcol srcstyle=leftbothnumcol A
srcstyle=leftleft anything A

P: works in paragraph mode
A: works in aligned mode
F: works when Source is read back from file

Figure 1: The effect of the srcstyle= option

I My chapter

Welcome1!

1to our isolated minipage environment

1

1 My section

The chapter begins on page 1.

a
2 + b

2 = c
2 (1)

Indented.

2

1\chapter{My chapter}\label{c}

2Welcome\footnote{to our isolated

3minipage environment}!

4\newpage

5\section{My section}\label{s}

6The chapter begins on page

7\pageref{c}.\par

8\begin{equation}a^2+b^2=c^2

9\end{equation}

10\par Indented.

Figure 2: Display verbatim isolation with the PexaMinipage environment

3.3 Display verbatim isolation
The PexaMinipage environment is provided, which is similar to the built-in minipage environment, but provides
better isolation of the Sample from the container document, because it saves and restores section, page, equiation
(etc.) numbers and also marks (section titles in page headers). Labels (for \label, \ref etc.) are not isolated,
because many packages use them in a non-standard way. See Figure 2 for an example.

The environment also cancels vertical skips (including \belowdisplayskip) at the bottom of its contents.
For space conservation, \abovedisplayskip above the very first displayed equation is also canceled. To vaid this,
put \everydisplay{} before the formula. The environment starts with \noindent, but subsequent paragraphs
are indented.

3.4 Feature comparison
Although there are several LATEX packages providing display and/or inline verbatim environments for LATEX,
examplep has some important unique features not found in other packages (see the beginning of this section for
details). The author has tried the following packages before deciding to write examplep:

verbatim Although the verbatim environment is built-in into LATEX, its most important limitation is that it eats
up TEX memory when typesetting very long verbatim material (of several hundred or thousand lines). The
verbatim package fixes this, and provides the \verbatiminput command (similar to the \PexaShowSource
command of examplep) and the comment environment (similar to PIgnore in examplep).

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

34 Verbatim Phrases and Listings in LATEX
Péter Szabó

moreverb This package extends the verbatim package with additional features: proper handling of tabulators
(also accessible from examplep with the listings interface), line numbering (also available in examplep with
much more customization), verbatim surrounded by a frame (this is not available in examplep, but it
works with listings, with page breaks allowed), the verbatimwrite environment writes its contents to a
file (similar to the WFile environment in examplep).

sverb It provides display verbatim with tabulators and long environments, and it can read and write text from
files. It also has a side-by-side environment (demo) with fancy frames. The verbfwr package (part of the
examplep distribution) was derived from parts of this package.

syntax This package is written by the author of sverb. It provides generic and customizable inline verbatim
support and it also has powerful features to typeset BNF-like grammars and syntax diagrams. It is
documented that no attempt is made to make the constructs work inside macro arguments or section
titles.

alltt This standard LATEX package defines the alltt environment in which the characters \ { } retain their
original meaning, so it is possible to do some manual formatting in the verbatim text.

fancyvrb [5] This is extremely configurable verbatim package provides inline verbatim even in footnotes, display
verbatim even with side-by-side, line numbers on any side, all kinds of francy frames even with page breaks,
text formatting and writing and reading from files; and very long diplay verbatim text. Options can be
specified any time within the argument of the \fvset command. The original verbatim environment is
not modified, but a new one, Verbatim is defined. Setting the background color is not possible.

This package is not actively developed. Version 2.7 (dated 2000/03/21) is part of teTEX. Oddly enough,
the newest version on CTAN is 2.6, which a file timestamp in 2004, but it dated 1998/07/17).

fvrb-ex This package is part of the fancyvrb distribution and uses the fancyvrb package. It provides a side-by-side
display verbatim environment (SideBySideExample). A page break is not allowed in the Source after the
Sample. The xrightmargin option has to be specified manually (e.g. xrightmargin=3cm. The first two
characters of each line in the environment are ignored.

ltxdoc The most important features of examplep inspired by the LATEX documentation package are display
verbatim line numbering with srcstyle=leftnum and inline verbatim started with ÷. The ltxdoc package
typesets everything between two | characters as inline verbatim. This is not supported by examplep to
avoid making an ASCII character active.

listings [1] The most important layout elements of this sophisticated, highly customizable, actively de-
veloped package missing from examplep are: background color, frames (with page breaks allowed),
syntax highlighting and proper tabulator support. Except for the background color and frames,
these features can be used from examplep with its interface to listings, see in Subsection 4.1. Use
\lstset{columns=fullflexible,language=C,backgroundcolor=\color{red},frame=trBL} to try
these features. listings also provides inline verbatim mode (with syntax highlighting), in the character-
delimited argument of the command \lstinline; unfortunately, spaces at line breaks (with option
breaklines) are rendered in an inconsistent way, and line breaks do not work well with background color.

listings has an important weak point: it cannot typeset ISO Latin accented characters with the inputenc
package; the way described in the manual doesn’t work as expected: it puts the accented characters to
the wrong place in the line. This problem, however, is solved when listings is invoked from examplep. See
more about listings in Subsection 4.1.

4 Customization
The operation of examplep can be customized with options as 〈key〉=〈value〉 pairs. Global options, which affect
all subsequent commands within the current block, can be specified as package load options (\usepackage[...]
{examplep}) or as argument of the \PexaDefaults command. LATEX doesn’t allow complicated option values
(such as values containing some expandable macros, for example after linenumberformat=) to be specified
in the \usepackage line – use \PexaDefaults in such cases. Many commands and environment accept local
options, which affect only that construct.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

35

All options have default values, which are indicated below right after the option name. If the option has
a fixed set of possible values, all of them are mentioned, and they are prefixed by =. The defaults have been
chosen so the PSource environment matches the builtin verbatim environment as closely as possible. Note that
the original environment is not overridden before the verbatimenv=yes is specified.

Q=unchanged To enable \Q, use =yes instead of the default.

abreak=unchanged To enable \abreak, use =yes instead of the default.

addvspace-bottom={\vskip\z@skip\addvspace} Specifies the command to add vertical space below display
verbantim. The default works fine, but e.g. packages maintaining the baseline grid might want to change
it.

addvspace-top=\addvspace Command to add vertical space above display verbantim. The default works fine,
but for example, packages maintaining the baseline grid might want to change it.

allowbreak=yes Use =no to disable page breaks in the Source of display verbatim.

allowshrink=yes The default will shrink the Sample horizontally if the Source is too wide. Use =no to disable
this. Use =force to enable shrinking of Source, and with srcstyle=leftleft or srcstyle=leftboth,
also enable shrinking of the Source if it is narrow.

baseline-grid=no Use =yes to adjust the height of the Sample to be an integer multiply of \baselineskip
(with yalign=u and yalign=v).

boxstyle=p Controls how the Sample is boxed. Capital letters are not allowed for side-by-side display. By
default (=p), a PexaMinipage environment is put inside a \vtop. Use =h to put a \hbox only, =v to
put a \vtop only, =V to put a \vbox only, =m to put a minipage environment inside a \vtop, =M to put
a minipage environment inside a \vbox, =P to put a PexaMinipage environment inside a \vbox, =G to
add \begingroup and \endgroup only. The default is recommended for most cases, because the \vtop
provides proper alignment with the Source, and the PexaMinipage environment provides isolation (of page
and section numbers etc.) from the main document.

bsdiv=unchanged To enable \÷, use =yes instead of the default.

div=unchanged To enable ÷, use =yes instead of the default.

firstlinenum=1 Specifies the number of the first line of a numbered Source listing.
Useful with srcstyle=leftnumcol and srcstyle=leftnumhang.

linenumberformat={{...}} Commands to display a line number and the separator in a numbered Source
listing. See the default value in examplep.sty.

linenumbersep={} Commands to display the separator in a numbered Source listing.

listings=no Use =yes to display each Source line with the listings package. Specify options (to be executed in
\lstset), separated by commas in the argument. Read more about the options in the documentation of
the listings package. For example, listings=yes and listings={} uses listings with default options (no
syntax highlighting), and listings={language=C,showtabs} enables syntax highlighting for C language
and enables visible tabulators. See Subsection 4.1 for more information.

listings-verbatimfont=pexavf Set the font to be used in the Source when listings= is active.
See source-verbatimfont= for the possible values.

mp-equation-reset=yes Use =no to make the main document and the Samples inside PexaMinipage share the
same equation counter.

mp-varioref-reset=no Use =yes to make the internal counter vrcnt of the varioref package to be reset for
each Sample inside PexaMinipage. This option doesn’t affect the final output, and varioref expects this
counter not to be reset, so it is not recommended to change the default.

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

36 Verbatim Phrases and Listings in LATEX
Péter Szabó

noligs=some By default, only those ligatures are disabled whose second character is one of ‘ ’ , - < >. Use
=kernel to get the same effect, but using the LATEX built-in \@noligs. Use =most to get all ligatures
with either the first or the second character having code between 32 and 127 and catcode 12. Please
note that ligatures in inline verbatim mode are disabled anyway, because \allowbreak is inserted between
characters of catcode 12, depending on the value of pverb-linebreak=.

pexaminipage-setuphook={} Extra commands to run when starting the PexaMiniPage environment, just after
the environment has finished its own initialization.

pverb-hash=full Use =half to make \PVerb convert ## to #. The command \PVerbH is the same as \PVerb
but forces =half. This is required when \PVerb or ÷ is used inside a macro argument. For exam-
ple, \textit{÷#÷} yields the error message Illegal parameter number in definition of \reserved@a, but
\textit{\PVerbH{##}} works fine. The error message is a general LATEX kernel limitation, for example
\textit{\@gobble{#}} doesn’t work either.

pverb-hyphenchar=hyphen By default, the minus character (ASCII code 45) is used to for automatic word
hyphenation in inline verbatim. Use =char’30 to have character with code 24; see also Subsection 7.6.
Use =none to disable word hyphenation (by setting \hyphenchar to −1). Use =unchanged to get the
hyphenchar from the font (the cmtt and ectt fonts have word hyphenation disabled). Please note that
hyphenation around symbols is affected the pverb-linebreak= option, not this one.

pverb-leftbreakmin=2 Specifies the minimum number of characters in inline verbatim after which it is allowed
to break the line (with pverb-linebreak=). Values allowed are 0, 1 and 2, but 0 usually doesn’t make
sense.

pverb-linebreak=char By default, \PexaAllowBreak is inserted around symbols in inline verbatim, so a line
break (with a discreationary hyphen affected by pverb-linebreakchar=) is allowed there. Use =yes
to insert \allowbreak instead, which allows a line break without discretionaries. Use =no to disable line
breaks around symbols in inline verbatim. The option pverb-hyphenchar= affects intra-word hyphenation
in inline verbatim, not this one.

pverb-linebreakchar={\lnot} Specifies the discreationary hyphen to be used in \PexaAllowBreak. See
also pverb-linebreak=.

pverb-space=invbreak By default, spaces in inline verbatim are invisible, variable width (as allowed by the
font, see also pverb-stretchshrink=) and breakable (i.e. a space can be replaced by a line break if
necessary). Use =invdisc to get an invisible, variable width space which becomes visible (␣) when it is
broken at the end of the line. Use =invfixbreak to get an invisible, fixed width and breakable space. Use
=invnobreak to get an visible, variable width and unbreakable space. Use =visnobreak to get a visible,
fixed width and unbreakable space. Use =visbreak to get a visible, fixed width space with line breaks
allowed on both sides. Use =invbreakleft to get a visible, variable width space with infinite stretchablility
if the line is broken there (this may have strange effect on other line breaks in the paragraph, so please
try to avoid it). The built-in \verb* command uses source-space=visnobreak.

pverb-stretchshrink=yes By default, spaces in inline verbatim are forced to be stretchable and shrinkable
(by \quad/9). Use =no to disable stretchability and shrinkability. Use =unchanged to keep the settings in
the font. Note that \fontdimen3 and \fontdimen4 are changed by this option, and the changes are local
to inline verbatim mode.

pverb-verbatimfont=pexavf Set the font to be used in inline verbatim mode. See source-verbatimfont= for
the possible values.

samplewidth=.5\PexaWidth Specifies the maximum width of the Sample in side-by-side display as a TEX
dimension. The actual Sample can become actually narrower (see allowshrink=. The dimensions
\hsize, \linewidth and \PexaWidth can be used. (Our LATEX book used samplewidth=.45\PexaWidth.)
\leftskip and \rightskip do not affect this option. \hsize can be used, which is the total width avail-
able (including the extra margins added by surrounding list environments), \linewidth is \hsize widtout
the extra margins produced by lists, and \PexaWidth is the total width of the Source, the separator (see
vrule=) and the Sample.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

37

source-par-align=left Specifies the alignment of Source lines when srcstyle=paralign is active. Use =left
(default), =right or =center to specified flush-left, flush-right or centered alignment, respectively. Use
=justify to have the last line flush-left and the previous line justified (please note that each Source line
is mapped to a single paragraph, so the paragraph will have more than 1 line only if the source line is too
long). Use =justjust to have all lines justified. Use =unchanged to keep the alignment of the enclosing
block.

source-sepwidth=\tabcolsep Specifies the horizontal distance between the Source and the Sample. See also
vrule=.

source-space=invfixbreak Specifies how to typeset spaces of the Source. See pverb-space= for the possible
values. The built-in verbatim* environment uses source-space=visnobreak.

source-verbatimfont=pexavf Sets the font to be used for the Source when listings= is not active (see
also listings-verbatimfont= for listings=). Give =ttfamily to use \ttfamily, =pexavf to use
\pexa@@verbatimfont (which defaults to \verbatim@font), =latexvf to use \verbatim@font (which
defaults to \normalfont\ttfamily), =unchanged to keep the current font, or =normalfont to use
\normalfont.

srcstyle=left Specifies the horizontal alignment of the Source lines. See more in Subsection 3.2 and Figure
1.

ttlistings= (no default) Shorthand of listings-verbatimfont=ttfamily,listings=.

url=unchanged To enable \url, use =yes instead of the default. The \url will be defined as \def\url{\PVerbOpt{}}.
This has the disadvantage that inside \textit etc. it cannot typeset URLs having a single # (see
pverb-hash= for more), but the url package has the same limitation. A quick fix: use \itshape instead
of \textit etc.

usewidth=skipwidth Specifies which horizontal part of the main text should be used in a display verbatim.
By default, left and right margins introduced by list environments (such as itemize) and \leftskip
and \rightskip are respected. Use =linewidth to ignore \leftskip and \rightskip but respect list
environments. Use =hsize to use the whole width of main text. Note that this option affects the calculation
of \PexaWidth.

vextrabotdepth=\z@ Dimension to add to the depth of the display verbatim with yalign=v. The default works
fine, but for example, packages maintaining the baseline grid might want to change it for each instance.

vextravskip=\z@ Amount of vertical space to be added above display verbantim with yalign=v. The default
works fine, but for example, packages maintaining the baseline grid might want to change it for each
instance.

vsmallht=1pt Specifies Sample height threshold for yalign=v. If the Sample is lower than this (or sample a
higher than the 1st line of the Source plus \vextravskip – typical for \includegraphics), its top will be
aligned to the top of the Source, otherwise its top baseline (with \vtop) will be aligned to the top baseline
of the Source.

xalign=l Specifies horizontal alignment (=l for left, =r for right) of the Sample box (and the separator) within
its allocated width for side-by-side display. Please note that =r works only with boxstyle=h, because all
other box sizes use their full allocated width.

xindent=deeppre Specifies additional horizontal indentation in display verbatim mode. Use =none to get no
extra indentation. Use =narrower to get \narrower (both \leftskip and \rightskip are decreased
by \parindent). Use =deeper to move one level deeper in the list environment hierarchy and get that
indentation. Use =deeppre (default) to move one level deeper, but don’t change indentation (this is useful
with yindent=deeper – otherwise it is equivalent to =none). Use =deepright to set both left and right
indentation from the left indentation of =deeper.

yalign=u Specifies vertical alignment in side-by-side display. By default, the top of the bounding boxes of the
Source and the Sample is aligned, which looks nice if the Sample is an image, but doesn’t align properly
if the Sample is text with a font of similar size to the Source. Use =b to align the topmost baselines of

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

38 Verbatim Phrases and Listings in LATEX
Péter Szabó

the Sample and the Source. This looks nice if the Sample is text, but it is ugly if the Sample is an image
higher than \baselineskip. The use of =v is recommended, which decides between =b and =u based on
the height of the Sample (see vsmallht= for the details).

yindent=deeper Specifies the vertical space separating display verbatim from the surrounding text. Use
=none no have no extra vertical space, the display verbatim appears to be a new paragraph as far as
\baselineskip and \vskips are concerned. Use =deeper (default) to move one level deeper in the list
environment hierarchy (and use the \parsep and \partopsep etc. specified there). It is recommended to
have yindent=deeper and xindent=deeppre together, so there is no extra horizontal indentation.

verbatimenv=unchanged Use =yes to change the implementation of the verbatim and verbatim* environments
to use the PSource environment.

vrule=rule By default, the Source and the Sample are separated with a vertical rule of width \arrayrulewidth
in the middle of a horizontal space specified by source-sepwidth=. Use =skip to omit the rule but keep
the space. Use =none to have no separator at all.

The other packages (codep and verbfwr) shipped with examplep do not have load options.

4.1 Interface to the listings package
The listings package [1] provides advanced typographic for display verbatim, including proper typesetting of
tabulators and syntax highlighting for more than a hundred languages. examplep doesn’t try to reimplement
these features, but it supports calling the listings package to typeset the Source lines in display verbatim. The
surroundings (line numbers, vertical separation, horizontal margins and the Sample) are not effected, only the
Source line contents are passed to listings. This implies that the border and the background color support
provided by the listings package doesn’t work with examplep. To use the interface, the listings package must
be loaded, and either the listings= or the ttlistings= options of examplep has to be active when the Source is
typeset. Additional options can be specified to listings in the argument of \lstset at any time. The interface
has been tested with the listings package dated 2000/08/23 and 2004/09/07.

examplep treats tabulators (ASCII code 9) as 8 spaces. This is acceptable at the beginning of the line,
but it may be incorrect elsewhere. To get tabs right, specify the ttlistings=yes, or, to be more precise, the
ttlistings={tabsize=8} option to examplep. It is also possible to have visible tabulators: specify, for example,
ttlistings={tabsize=8,showtabs}. In our tests listings failed to detect the width of a character of a fixed
width font, so examplep enforces character width using the natural width of the space each time it calls listings.
This workaround made the showtabs listings option work properly. See the documentation of the listings package
for options that affect the typesetting of Source line contents. See an example of using listings from examplep
on page 16.

listings supports fixed width characters with a variable with fonts. However, this support seems to be broken
when used with examplep, so the columns=fullflexible listings option is enforced so proportional fonts will
look proportional. Although the listings package claims that it has accented letter support, this didn’t work well
with the single-character accented letters input using the inputenc package (those characters were positioned to
a wrong place inside the line, possibly because listings has failed to recognise that \lst@UseLostSpace\lst@
PrintToken has to be inserted in front of the accented character into its internal token list). examplep contains
a work-around to this problem, with the following limitations: multibyte input encodings such as UTF-8 are not
supported (will print strange error message); accented characters may not be part of keyword names in syntax
highlighting; accented characters are shown as ^^ hex escapes in aligned mode (see in Subsection 3.2), so they
don’t work with \PexaShowBoth.

listings, when called from examplep, failed to break ligatures such as ‘? and <<. This has the side effect
that guillemots would be typeset instead of bitwise right shift in C language sources. examplep modifies the
\lst@FillOutputBox@ macro so it will add a \relax between each character displayed – so all ligatures are bro-
ken. (This approach is quite differrent from the way LATEX disables a few ligatures with \@noligs; \pexa@noligs
is similar to \@noligs in this respect.)

It is possible to customize the listings package so it typesets some strings differently. For example, with
the literate={<=}{{\leq}}1 listings option, all occurences of <= (even those inside strings of the target
programming language) are typeset as ≤. There are no problems when using this feature from within examplep.
It is also possible for strings and comments in the syntax-highlighted Source to span multiple lines – listings
takes care to remember its internal state between lines.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

39

5 Commands and environments
The arguments between brackets ([and]) are optional: either the the argument and the brackets are all missing
all all present. The arguments named “options” is a comma-separated list of local customization options, defined
in Section 4. The {+ notation in front of an argument means that the argument can be delimited by braces (thus
it must be properly nested), or with any symbol in \dospecials (\ $ & # ^ _ % ~) or in \pexa@cverb@donormals
(‘ ! @ * - + = | : ; ’ " , . / ? < > () []).

\PVerb[〈options〉]{+〈verbatimtext〉} Typesets its argument in inline verbatim mode. Similar to the LATEX \verb
macro, but respects the options. The use of [] is recommended instead of omitting the options altogether,
because [] will ensure that the proper catcode changes are in effect even for the first verbatim character.
This command is robust.

\PVerbH{+〈verbatimtext〉} Shorthand for \PVerb[pverb-hash=half] (extra options cannot be specified). This
command is robust.

\PVerbInner\PVerb. . . Forces the \PVerb. . . command immediately following it to work in inner mode, thus
compressing spaces, respecting comment characters etc. Because of how TEX works, it is impossible to
go the other way round, and force outer mode, because it is too late change catcodes – the argument has
already been tokenized in inner mode. This command is robust.

\PVerbOpt{〈options〉}{+〈verbatimtext〉} Equivalent to \PVerb, but uses a different syntax. For example,
\item[\PVerb[pverb-space=visbreak]{xy}] doesn’t work because of the nested [. Use this instead:
\item[\PVerbOpt{pverb-space=visbreak}{xy}], or \item[{\PVerb[pverb-space=visbreak]{xy}}].
This command is robust.

\Q{〈verbatimtext〉} Similar to \PVerb, but its argument must be escaped (see in Subsection 3.1), and it can be
used in section titles etc. Must be enabled with Q=yes. This command is robust.

÷〈verbatimtext〉÷ Similar to \PVerb, but it can be used in section titles etc. (but not int tabular) (see in
Subsection 3.1). Must be enabled with div=yes. This command is robust.

\÷〈verbatimtext〉÷ Equivalent to \Q, but the argument delimiter is different. Similar to \PVerb, but its argu-
ment must be escaped (see in Subsection 3.1), and it can be used in section titles etc. Must be enabled
with bsdiv=yes. This command is robust.

\url{〈url〉} Must be enabled with url=yes. This command is robust.

\begin{WFile}{〈filename〉} (defined in the verbfwr package) Writes its contents verbatim to the specified file.
TEX .tcx and line ending transformations apply, so it is possible that accented letters will be converted
to ^^hex according to the input encoding.

\begin{WAux} (defined in the verbfwr package) Writes its contents verbatim into the current .aux file. TEX
.tcx and line ending transformations apply, so it is possible that accented letters will be converted to
^^hex according to the input encoding.

\begin{PWSource}[〈options〉] Comination of \begin{WSource} and \PexaShowSource. It is recommended to
have a [] even if there are no options, so the very first token of the contents will be read with proper
catcodes.

\begin{WBoth} Writes its contents to the Source and the Sample temporary file. It is a combination of WSample
and WSample.

\begin{WSample} Writes its contents to the Sample temporary file (pexa-sam.tex), to be typeset by a sub-
sequent \PexaShowSample or \PexaShowBoth. The line must end at \end{WSample} because of technical
reasons.

\begin{WSource} Writes its contents to the Source temporary file (pexa-src.tex), to be typeset by a subse-
quent \PexaShowSource or \PexaShowBoth. It is similar to \begin{verbwrite} in the sverb package and
the \begin{filecontents} LATEX built-in environment. The line must end at \end{WSource} because of
technical reasons.

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

40 Verbatim Phrases and Listings in LATEX
Péter Szabó

\begin{PIgnore} Ignores everything up to \end{PIgnore}. The environment closer must be at the end of its
line. Similar to the comment environment in some other packages.

\begin{PSource}[〈options〉] Typesets its contents in display verbatim. Similar to the LATEX \begin{verbatim}
environment, but respects the customization options. It is recommended to have a [] even if there are
no options, so the very first token of the contents will be read with proper catcodes. This environment is
similar to PWSource, but it doesn’t create a temporary file, so it is faster, srcstyle=leftboth (etc.) can
be used, and there is no ambiguity between ^^e1 and á (etc., see more in Subsection 7.2). Page breaks are
allowed between each Source line. (The implementation of this environment is fairly complex compared
to PWSource.)

\begin{verbatim} Equivalent to \begin{PSource}[]. Must be enabled with verbatimenv=yes.

\begin{verbatim*} Equivalent to \begin{PSource}[source-space=visbreak].
Must be enabled with verbatimenv=yes.

\begin{PexaMinipage}[〈vbox-type〉]{〈width〉} Similar to the LATEX minipage environment (and accepts the
same arguments), but isolates (concerning section numbers etc.) of its contents from the main document
more thoroughly. See Subsection 3.3 for details of isolation.

\PexaShowBoth{〈options〉} Typeets the Source and the Sample side-by-side in display verbatim mode. The
Source comes from the temporary file written by the last WSource or WBoth environment, and the Sample
comes from the temporary file written by the last WSample or WBoth environment. By default, a vertical
separator line is drawn between the Source and the Sample, and page breaks are allowed in the Source
after the end of Sample. It can be called multiple times with different options for the same file.

\PexaShowSample{〈options〉} Typesets the Sample (written by the last WSample or WBoth environment) in dis-
play mode. It can be called multiple times with different options for the same file.

\PexaShowSource{〈options〉} Equivalent to \PexaInputSource with the file written by the last WSource or
WBoth environment. It can be called multiple times with different options for the same file.

\PexaInputSource{〈filename〉}{〈options〉} Typesets the contents of the specified file as Source in display ver-
batim mode.

\begin{code} (defined in the codep package) Typesets its contents side-by-side and also marks its contents to
be dumped to the CD. By default, each line is emitted to all three streams, but lines with special prefixes
will go into the Source, Sample or CD-file stream only. See Section 6 for details.

\PexaAllowBreak Allows a line break here with a discreationary specified in the option pverb-linebreakchar=
inserted.

\abreak A robust command which inserts \PexaAllowBreak when the font {\ttdefault}{m}{n} is active;
inserts \allowbreak otherwise. Must be enabled with abreak=yes.

6 Writing examples with the codep package
Textbooks and manuals tend to have many display verbatim examples. The examples are usually code snippets
which can be further processed by a compiler or another program. Sometimes minor modifications, such as
adding the proper header or trailer, are necessary before the code snippet can be processed. It is customary to
put all code snippets in the book onto the CD accompanying the book. The code environment of the codep
package (part of the examplep distribution) generates CD-files automatically.

Three streams are generated from the contents of each code environment: the Source, the Sample and the
CD-file streams. Most parts of these streams are identical. The Sample usually differs from the Source because
the code snippet has to be typeset specially in the book (for example, \includegraphics has to be used to
typeset an EPS file whose Source is displayed). The CD-file differs from Source because additional header and
footer may be required (such as \begin{document} etc.), which are omitted from the book to conserve space.

The code environment reads the code snippet line-by-line. The type of the line is specified in first two
characters. Lines having the default type are written to all 3 streams, and special line types exist to write to
a specific stream only. The code environment writes the Source and Sample streams to temporary files, and

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

41

upon the end of the environment, it calls \PexaShowBoth (or \PexaShowSource, if the Sample stream is empty)
to typeset the example. The CD-file stream is not written to a file by TEX, but the file name and starting
line number of the code environment is reported in the .aux file. A Perl script (wrfiles.pl, part of the examplep
distribution) has to be called later to the actual generaton of CD-files. It will examine the .aux files, extract
the CD-file stream from the .tex files, and dump these streams to individual files in the CDfiles directory.
The file names can be specified in the code enviroment, and the environment can generate file names based on
chapter and page numbers (so the reader will know from the file name where to read more about the example).
The same file name is never generated again.

The code package was used in our recent LATEX textbook [4] to typeset its examples. Most of the examples
were written in LATEX, but many of them were METAPOST sources, and some of them were others (e.g. config-
uration files, shell scripts or EPS files). Because of the huge amount of LATEX examples, special features were
added to make them easy and convenient to input for the author. For example,

\begin{code}
t \usepackage{url}
URL:
\\\url{http://foo.org/~user/}

\end{code}

is displayed as (depending on the examplep options)

1%^\usepackage{url} URL:
2URL: http//foo.org/~user/
3\\\url{http//foo.org/~user/}

As seen above, examples are quite convenient to input, and examplep takes care of typesetting side-by-side,
determining width of the Source, allowing page breaks, putting margins and \vskips right, adding the rule
the separate the Source and the Sample, adding line numbers, generating file name for CD-file and writing the
CD-file with header and footer.

With codep it is easy to fulfill the following quality criterias: the Sample must be consistent with the Source
(i.e. if the Source is changed during editing to book, the Sample should change automatically); the CD-file must
be consistent with the Source; the CD-file must be directly compilable with LATEX (so a header and a footer
have to be added). When the deadline of finishing the book approaches, there might not be enough time left to
ensure these manually, so a package such as codep is very useful in this situation.

6.1 Example files on the CD
The following CD-file is generated from the code snippet above:

\documentclass{article}

\usepackage[latin2]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[magyar]{babel}
\usepackage{url}

\begin{document}

URL:
\\\url{http://foo.org/~user/}

\end{document}

The CodeDefaultD, CodeDefaultL, CodeDefaultB and CodeDefaultE environments can be used in the
preamble to customize the default header and footer generated into the CD-file. For example:

\begin{CodeDefaultD}
\documentclass[10pt]{article}
\end{CodeDefaultD}
\begin{CodeDefaultL}

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

42 Verbatim Phrases and Listings in LATEX
Péter Szabó

\usepackage[latin2]{inputenc}
\usepackage[T1]{fontenc}
\usepackage[english]{babel}
\end{CodeDefaultL}

Although TEX is able to write to external files with \textsfrite, there were several reasons for using an
external program (a Perl script) to extract the source snippets from the document sources:

• with \write the file always ends at end-of-line

• \write forces .tex if no extension is specified

• \write removes whitespace from end-of-line

• \write translates accented letters to hat-escapes (e.g. á to ^^e1) unless compiled with
latex –translate-file cp8bit.tcx (–translate-file il2-t1.tcx makes ő in DVI incorrect). There
is the same problem when emitting UTF-8 text.

• it is impossible to distinguish missing files from empty files, so accidental file overwrites are hard to prevent

• it is too late to verbatize if the verbatim text is inside braced macro arguments

The only limitations of this solution are: is not possible to \input or \include a subfile, and then use the
code environment in the referrer file; the subfile has to be included with \include{...} or \input{...} (with
braces); and the subfile must have extension .tex. The first one is usually not a problem, since referrer files
themselves do not typeset text, they only include subfiles. See Subsection 7.7 for implementation details.

6.2 \begin{code} invocation
The input syntax of the code environment has been designed so that typing the most common examples (short
LATEX code snippets) is simple and straightforward, but the author can have full control over all three streams if
he wants to. The contents of the environment is divided into lines. The first two characters of each line specify
the line type and the rest is the line data. The first character of the line type is usually a lowercase ASCII letter
or a punctuation symbol. Line types belong to classes, which are denoted by capital ASCII letters. The order
of the classes in the environment is significant, but the order of the individual types or lines within the class
is irrelevant. Some classes have default lines, which are used only if the class is omitted from the environment.
The default lines make it possible to have default CD-file header and trailer. The clases, in proper order with
allowed types in parentheses), are:

F (f, f !, v, v!) specify the file name.

D (d) the \documentclass line, default uses article

L (l) the preamble specific to the natural language, defaults for Hungarian babel, Latin-2 inputenc, T1 fontenc.
Use the CodeDefaultL environment to override.

P (p≡0, t) the preamble with the \usepackage lines

B (b) \begin{document}

C (<≡c, >≡o, ␣≡2, w, s, x, %) the document contents

E (e) \end{document}

The meaning of the complicated types are:

f Accepts a file name with extension. The use of _ in the name is not recommended. The extension (e.g. .tex)
is mandatory. The chapter and page numbers will be prepended to the file name (only the page number
for document classes without chapters), for example f foo.mp may become 2_63_foo.mp in chapter 2, on
page 63.

v Like f, but removes the default lines from classes D, L, P, B and E. This is ideal for emitting non-LATEX
examples.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

43

f ! Like f, but don’t prepend numbers to the file name.

v! Like v, but don’t prepend numbers to the file name.

p≡0 Writes only to the preamble of the CD-file.

t Writes to CD-file, appends line prefixed by %^ to Source. Useful to indicate in the book that a package is
needed. Example: t␣\usepackage{url}.

<≡c Writes to Source and CD-file.

> Writes only to Sample.

x Writes to Sample and CD-file.

␣≡2 Writes to Source, CD-file and Sample.

w Writes only to CD-file.

s Writes only to Source.

% Comment, ignored.

The code environment omits the Sample part from the book if the Sample is empty, and it omits the whole
display verbatim environment (but still writes to CD-files) if both the Sample and Source are empty.

6.3 An example with METAPOST code
If the eempost package is also loaded, the following code can be used to typeset a simple, syntax-highlighted
METAPOST source and its output:

{\PexaDefaults{listings={language=metapost}}\begin{code}
v house.mp
> \begin{EempDef}{house.1}{}{}
w beginfig(1)
u:=18bp; picture V; V:=image(
draw unitsquare scaled u xscaled 2;
fill (0,u)--(2u,u)--(u,1.5u)--cycle
withcolor red);

draw V rotated 10;
draw V shifted (3u,0);

w endfig; end
> \end{EempDef}
> \leavevmode\EempUseFig{house.1}{0}{0}
% ^^^ Dat: \leavevmode to get the Overfull \hbox warning
\end{code}
} % Dat: nothing allowed after \end{code} in its line

If eempost is not loaded, the following code should be used instead:

{\PexaDefaults{listings={language=metapost}}\begin{code}
v house.mp
> \begin{WFile}{house.mp}
x beginfig(2)
u:=18bp; picture V; V:=image(
draw unitsquare scaled u xscaled 2;
fill (0,u)--(2u,u)--(u,1.5u)--cycle
withcolor red);

draw V rotated 10;
draw V shifted (3u,0);

x endfig; end
> \end{WFile}

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

44 Verbatim Phrases and Listings in LATEX
Péter Szabó

> \leavevmode\includemps{house.2}
\end{code}
}

The \includemps command should be defined in the preamble as:

\usepackage{graphicx}
\DeclareGraphicsRule{*}{mps}{*}{}
\makeatletter
\@ifundefined{Ginclude@eps}{}{\def\Ginclude@mps{\Ginclude@eps}}
\def\includemps{\@ifnextchar[\includempsb{\includempsb[]}}
\def\includempsb[#1]#2{\includempsc{#1}#2\@nil}
\def\includempsc#1#2.#3\@nil{%
\IfFileExists{#2.#3}{\includegraphics[#1]{#2.#3}}{
\GenericWarning{}{Please run: mpost #2^^J\@gobble}}}

\makeatother

This should work with both dvips and pdflatex. The typeset output looks like this:

1u:=18bp; picture V; V:=image(
2 draw unitsquare scaled u xscaled 2;
3 fill (0,u)−−(2u,u)−−(u,1.5u)−−cycle
4 withcolor red);
5draw V rotated 10;
6draw V shifted (3u,0);

7 Some implementation details

7.1 Starting from poor man’s inline verbatim
The following macro, derived from a macro in the .dtx documentation of David Kastrup’s binhex package [2],
typesets its argument in inline verbatim mode:

{\catcode\string‘>12 \gdef\stripprefix#1>{}}
\def\verbatize#1{{\ttfamily

\toks0{#1}\edef\next{\the\toks0}% Dat: make # OK
\fontdimen2\font=0pt % Dat: hide spaces
\expandafter\stripprefix\meaning\next
\unskip % Dat: strip final space, possibly after command
\fontdimen2\font=\dimen0}}% Dat: reset global change

This demonstration show how useful the TEX primitives \string and \meaning are. Both of them convert
tokens to characters with catcode 12 (other) or 10 (space). Token lists with spaces are hard to post-process
by TEX macros, because TEX macro expansion ignores spaces before undelimited macro arguments. But it is
possible to write a macro which converts spaces to anything with catcode 12, for example the \sca macro below
does this:

\begingroup\catcode\string‘‘12 \lccode‘‘‘\%\lowercase{\endgroup
\def\scc#1 {\ifx\hfuzz#1\else#1‘\expandafter\scc\fi}}

\def\scb#1#2{\scc#2\hfuzz#1} \def\sca{\scb{ }}
% try with: \message{\sca{foo bar }}

It is possible to change % in the definition above to anything, including a space: the replacement character will
have catcode 12. After such a conversion, the text to be emitted can be easily processed to add TEX macros,
change catcodes back to 13 for ISO Latin high accented characters, replace spaces with appropriate constructs,
insert \allowbreak to the right places to enable line breaks etc. The \PVerb macro, when invoked in inner
mode (i.e. read inside a macro argument) works this way, and respects the options specified by the author.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

45

7.2 Hex escapes with output translation
The TEX primitives \write, \message and \errmessage may escape some characters when printing them. By
default, TEX changes the code ranges 0–31 and 127–255 (the codes outside the printable ASCII range), escaping
such codes with a ^^: for example, the tabulator (code 9) becomes ^^I, and characters having a high code in
the font (not the input) encoding are dumped in hexadecimal, for example ő (having code 174 in T1 encoding)
becomes Ž. (This behaviour depends on the default .tcx file the TEX distribution uses. No translation occurs
with cp8bit.tcx. To spot the difference, run tex -translate-file cp8bit "\message{^^I^^1fá}\end", and
then change cp8bit to .missing., and run again.) The transformation is lossy: both \message{ő} and
\message{\string^^ae} yield the same result: ^^ae. Escaping the caret as ^^5e doesn’t help either, because
the TEX unescapes carets recursively when reading back the written file. Since ISO Latin accented characters
are more often needed in verbatim environments than double carets, examplep does the necessary unescaping
when it reads the file back. The back-transformation doesn’t work with UTF-8, because the 2nd byte is not
decoded by the time the first one is being executed. The unescaping would be done by TEX itself if the caret
had its original catcode 7, but that would imply that the non-escaping, verbatim carets wouldn’t work.

The unescaping is implemented in a straighforward, but ugly way in the \pexa@dohex@low. . . macros. The
caret escapes are parsed in a huge \if\else\if construct nested in 40 levels, and once the hexadecimal code
is available and converted to upper case, the \lccode‘+="〈code〉\lowercase{+} construct is used to insert the
appropriate character with catcode 12 (~ is used instead of + to get an active character, catcode 13). The
construct is not expandable, but it works because it is used for typesetting. The caret is made active and
defined to execute \pexa@dohex, so each caret in the file will get unescped.

7.3 Disabling ligatures
The only way to disable a ligature in TEX is to insert a nonexpandable tokens into the input stream be-
tween the characters forming the ligature. For example, f{}i or f\relax i can be used to get “fi” instead
of “fi”. The most important ligatures (in addition to ligature letters) to be disabled in verbatim mode are:
<< >> ?‘ !‘ ,, ‘‘ ’’ -- and ---. This can be accomplised by inserting a \relax token in front of each
‘ ’ , - < and >. The \pexa@noligs@some command of examplep does exactly this, for example, it defines
{\lccode‘~‘<13 \gdef~{\relax\string~}}. The definition slightly different from the one of the \@noligs
command in the LATEX kernel: \def<{\leavevmode\kern\z@\char‘\<}; but the effect is the same. The
\pexa@noligs@most command, on the other hand, makes all characters with category code 12 in the range
32. . . 127 active, and adds \relax to both sides. This change doesn’t affect ASCII or accented letters, but
usually there are no ligatures with letters in typewriter fonts. See also the noligs= load option.

7.4 Detecting inner/outer brace in inline verbatim mode
The \PVerb commands work differently based on whether they are inside a macro argument or not. More
precisely, they detect whether they are able to change the catcode of the following token. If so, they are in outer
mode (i.e. outside a macro argument), so they change all the other catcodes as well, so consecutive spaces and
comment characters will be included in verbatim, too. Otherwise, they are in inner mode, their argument is
already read and tokenized by TEX’s eyes, so changing catcodes is pointless.

The auto-detection works this way: the catcode of all the special characters (as enumerated in \dospecials;
including braces) is changed to 3 (math-shift). Then the next token is read into \reserved@a with
\afterassignment\pexa@cverb@gottoken\let\reserved@a= . No tokens are ignored this way, not even
spaces. The \pexa@cverb@gottoken macro then examines the catcode of the character in \reserved@a, and
if it is 3, it continues in outer mode, otherwise it continues in inner mode. In inner mode, the next token is
forced to be an open-brace, because verbatim material with braces not nested cannot be read into inner mode
anyway (TEX would print an error message when it is trying to find the end of the macro argument containing
the \PVerb construct).

Another common trick is used when parsing the argument in outer mode when it is delimited by braces. Nor-
mally a TEX macro expansion (using the definition \def\pexa@cverb@outerc#1{...}) can read an argument
that is in braces, but in our case the very first opening brace has been already read (by \let above), so we have to
insert it back: \catcode‘\{1 \catcode‘\}2 \expandafter\pexa@cverb@outerc\expandafter{\iffalse}\fi.
The \iffalse}\fi here is needed for making the definition properly nested.

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

46 Verbatim Phrases and Listings in LATEX
Péter Szabó

7.5 Inline verbatim in section titles
The TEX command \write, \message and \edef fully expand their arguments, and similar expansion is enforced
by the \markboth built-in LATEX macro for section titles and page headings. Therefore macros in section titles
have to be protected so their expansion is delayed until the section title is typeset. LATEX offers \protect for
this: if the macro control sequence is preceded by \protect, its expansion is properly delayed; the expansion
of the argument has to be delayed manually in a similar way. Some macros have \protection included; they
are called “robust”. If the definition a macro starts with \DeclareRobustCommand instead of \newcommand, the
macro is defined to be robust (and its body can be retrieved by looking at the control sequence with a space
added, e.g. \expandafter\show\csname␣sqrt␣\endcsname).

\protect can have three definitions depending on what time it is processed: it is \string in a \typeout
or a LATEX error or warning message (try \typeout{\meaning\protect}); it is \noexpand\protect\noexpand
when \writeing to a file (most commonly the .aux file); otherwise it is just \relax (≡ \@typeset@protect;
try \pagestyle{headings}\section{\meaning\protect} and spot the difference between the main text, the
section title and the .aux file).

The \÷ and \Q inline verbatim commands are made robust, so they can be used in macro arguments. In fact,
they are extra-robust, since they take care of protecting their arguments when being written to a file by LATEX.
Protecting here means adding \noexpand in front of each token in the argument. The token parsing is easy
since the argument – by the nature of these commands – may not contain braces or spaces. The implementation
looks like this.

\long\def\÷#1÷{\Q{#1}}
\long\def\Q{\ifx\protect\@typeset@protect\expandafter\@gobble\fi
\@thirdofthree\@firstoftwo\displayit\protectit}

\def\displayit#1{...}
\def\protectit#1{\noexpand\÷\protectnext#1÷}
\long\def\protectnext#1{\noexpand#1%
\ifx#1÷\else\expandafter\protectnext\fi}

The first trick is in the body of \Q: the argument is passed to either \displayit or \protectit, depending on
the current value of \protect. If the condition is true, \@gobble is called, which removes \@thirdofthree, so
\@firstoftwo will choose \displayit (otherwise, \@thirdofthree chooses \protectit). The second, more
classical trick is the rôle of \expandafter in the definition of \protectnext: it makes the \fi token disappear,
so the tail-recursive call to \protectnext will grab the next token into #1 instead of \fi itself.

7.6 Special hyphenchar in inline verbatim
When inline verbatim is hyphenated, care has to be taken to make the discretionary hyphen different from a
regular, verbatim hyphen. (There is a similar problem with spaces disappearing when the line is broken; to
avoid this, try setting the option pverb-space=visbreak or pverb-space=invdisc.) TEX auto-hyphenation
takes the discretionary hyphen from the \hyphenchar of the font. So the solution is adding a new glyph to the
verbatim font, changing the font encoding vector to include the glyph, and then setting \hyphenchar.

We have chosen character position 24 (per-thousand sign) of the T1 encoding to be replaced by a soft hyphen
(), which is deliberately narrower than all the other characters, so the reader immediately sees its function. For
example: “foo
bar”. We have drawn the glyph in Fontforge, saved the data to PFB, converted it to human-readable
format with the command type1fix.pl shorthyp.pfb gsx: shorthyp.gsx, extracted the human readable
glyph definition (/shorthyp { ... }) from the output. We have changed the /FontName and injected the
glyph to original font with the following command:

perl -x -S type1fix.pl --set-leniv=0 --dump-spaces=no --pack \
--dump-bars --dump-stde --dump-ends=no --debug-warnings \
--chk-insize=no --set-uniqueid=random --set-fontname=t1xtts \
--set-glyph="/shorthyp { 50 354 hsbw 315 vmoveto -17 vlineto 0
-8 0 -8 6 -4 rrcurveto 4 -6 8 0 5 0 rrcurveto 195 hlineto -124
vlineto -11 0 -21 15 vhcurveto 2 0 3 1 2 1 rrcurveto 10 2 1 12
0 12 rrcurveto 0 8 -1 8 0 5 rrcurveto 130 vlineto 0 5 1 7 0 7
rrcurveto 0 12 -2 11 -11 3 rrcurveto -5 1 -6 0 -5 0 rrcurveto
-12 0 -12 -1 -10 0 rrcurveto -98 hlineto -16 0 -19 2 -17 0

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

47

rrcurveto -32 -6 -3 -24 hvcurveto closepath endchar} def" \
t1xtt.pfb pfb: t1xtt-shorthyp.pfb

We have changed six lines in tex256.enc to match the glyph names in the font (e.g. /endash → /rangedash),
and we have changed position 24 to /shorthyp. We have also changed the name of the encoding in the beginning
of the file. We have inserted the following line to the PostScript font map files (e.g. psfonts.map), without the
line break:

t1xtts t1xtts "TeX256-shorthypEncoding ReEncodeFont"
<tex256-shorthyp.enc <t1xtt-shorthyp.pfb

We have also added a new TFM file based on the old one. We have dumped the old one with tftopl
-charcode-format=octal t1xtt.tfm, modified the width (CHARWD) of character 24 (CHARACTER O 30), and
saved the modifications with pltotf modified.pl t1xtts.tfm. We’ve added the LATEX font map file t1xtts.fd
with the following content:

\DeclareFontFamily{T1}{xtts}{\hyphenchar\font\m@ne}
\DeclareFontShape {T1}{xtts}{m}{n}{<->t1xtts}

The \hyphenchar settings above disables automatic word hyphenation, so words inside \texttt etc. won’t
be accidentally hyphenated. We have copied all the files above to the appropriate directories and we have
run mktexlsr to update the file list. We have included some options in \PexaDefaults line in the doc-
ument preamble: pverb-hyphenchar=char’30 (for automatic word hyphenation) pverb-linebreak=char,
pverb-linebreakchar={\string\char’30␣} (inserted around symbols).

We have also defined \def\pexa@verbatimfont{\normalfont\fontfamily{xtts}\selectfont}, and we
have made sure that the T1 encoding is in use (\usepackage{t1enc}).

The overall effect of these modifications was that examplep now used our glyph for automatic word hyphen-
ation and as discreationary hyphen around symbols in inline verbatim mode. The demonstrations above shows
that it is quite complicated to change a single glyph in a LATEX font. It is hoped that the situtation will improve
with TEX’s successors.

7.7 Passing information about the CD-files to wrfiles.pl
wrfiles.pl is used to extract the CD-files from the LATEX sources of a book. The reasons why an external program
is used instead of TEX’s built-in \write command are described in Subsection 6.1.

The file names and environment start line numbers are passed to wrfiles.pl in the .aux file(s). For example,
the line \@gobble{code:foo.tex:156:2_pic3.mp} is a declaration that there is a code environment starting
at line 156 in the file foo.tex. wrfiles.pl understands such declarations, and it also understands lines like
\@input{foo1.aux}, so dumping works even if the document is separated to several \included source files.
The declaration above is ignored by LATEX when it reads back the .aux file (because \@gobble gobbles its
argument).

Although the \inputlineno primitive is mentioned twice in the TEXbook [3], its – rather straightforward
– purpose is not documented there. But the real problem is that TEX doesn’t remember the name of the file
being read. \jobname contains the name of the top-level .tex file, so it doesn’t work when that file \includes
or \inputs subfiles containing code. The codep package thus modifies the \InputIfFileExists command to
save the file name to the macro \codep@code@@inputfile if the extension is .tex. (The other most common
extension after the preamble is .fd: such a file is loaded each time a LATEX font that has not been used
yet is selected.) The implicit limitation here that code won’t work unless the extension of the file included
is .tex. Hooking \InputIfFileExists affects \include{...} and \input{...}, but not not \input␣...,
\documentclass or \usepackage. This is not a problem if the author remember that he has to use braces
around the file name.

Since there is no hook for \endinput (and some packages rely on that \endinput is an expandable primitive),
it is not possible to set up a stack of names of files being read. Thus, if file A has included file B, an after
that code environment placed in A will not work, because the declaration line read by wrfiles.pl will contain the
name of B instead of A. This is not a serious limitation, becase files including other files usually don’t typeset
text by themselves after the inclusion.

The primary reason why wrfiles.pl needs the .aux file is that it has to embed the page and chapter numbers
into the file names. Although wrfiles.pl could find the source file with the code environments by trying to match
line numbers with all source files in the current directory, we have decided to make it fail when the file name

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

48 Verbatim Phrases and Listings in LATEX
Péter Szabó

is not emitted properly into the declaration, so it is sure that the examples in the book and on the CD are
consistent.

8 Future work
The most important features to be added and other improvement possibilites:

• a better approach towards automatic hyphenation of inline verbatim, after studies in typography

• allow wider sample if source is small enough

• why doesn’t \selectlanguage work inside \begin{PSource}[srcstyle=leftboth]

• \PVerb{foo} mustn’t insert “¬” if foo is at end-of-line

• \PVerb{...} inner unnested braces (\futurelet?)

• differentiated \penalty values in \PVerb

• paragraph mode should work with side-by-side displays (of course, measuring the width of the Source has
still to be done in aligned mode)

• ASCII tabulator (9) characters aren’t supported properly, they are just converted to spaces. The width of
the tab character should depend on its horizontal position in the line. (With listings=, the results are
already correct.)

• framing and background color support to display verbatim

• accented characters should work with listings and \PexaShowBoth. The original catcode of ^ should be
kept so TEX itself would parse the hex escapes.

• an interface to \lstinline in listings, with line breaks allowed

9 Conclusion
examplep, as it is now, is a highly customizable LATEX package that provides both inline and display verbatim
mode with several advanced features, many of which are not available in any other packages. The code envi-
ronment is also provided which can typeset both the Source and the Sample column of a side-by-side display
verbatim from the same LATEX source stream, furthermore it can emit the stand-alone working version of the
Source into a CD-file. These features make the code environment especially useful for sofware textbook and
manual authoring. The whole examplep distribution is under the GNU GPL, and it is freely available from
CTAN. An earlier version of the packages was used to typeset all the examples in a 770-page introductionary
book about LATEX.

examplep is not complete. Some important features are not implemented yet and the package has not been
tested thoroughly. Some parts of the code are really ugly, partially because it has not been polished up after
writing, and partially because the architecture of TEX and LATEX doesn’t provide an elegant way to address
the problem. For example, active characters are overloaded: they are used by inputenc, babel (shorthands) and
listings (syntax highlighting) for different purposes – these packages have to make extra effort to cooperate with
each other. We hope that TEX’s successors will improve these conditions, and the core system will provide a
generic way to tokenize verbatim text instead of changing catcodes.

References
[1] Carsten Heinz. The Listings Package, 7 September 2004.

CTAN:macros/latex/contrib/listings/listings-1.3.dtx.

[2] David Kastrup. The binhex.tex package for expansible conversion into binary-based number systems, 2001.
CTAN:macros/generic/kastrup/binhex.dtx.

[3] Donald E. Knuth. The TEXbook. Addison–Wesley, 1984.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT08

Verbatim Phrases and Listings in LATEX
Péter Szabó

49

[4] Ferenc Wettl, Gyula Mayer, and Péter Szabó. LATEX kézikönyv. Panem, Budapest, 2004.

[5] Timothy Van Zandt, Denis Girou, and Sebastian Rahtz. The ‘fancyvrb’ package. Fancy Verbatims in LATEX,
1998.
CTAN:macros/latex/contrib/fancyvrb/fancyvrb.dtx.

MOT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

50 Verbatim Phrases and Listings in LATEX
Péter Szabó

From RTF to XML to LATEX

Andre Dierker Arne Jans
Stephan Lehmke

QuinScape GmbH, Thomasstraße 1, 44135 Dortmund, Germany
{Andre.Dierker,Arne.Jans,Stephan.Lehmke}@QuinScape.de

http://www.QuinScape.de

February 26, 2005

Abstract

This paper shows how the widely used Rich Text Format (originally specified by Mi-
crosoft) can be processed to produce XML and how the resulting XML-file can be pro-
cessed by LATEX to produce print-quality PDF-files. To convert the RTF-files to a specific
XML-format we use the open-source-tool Majix which can be found on Sourceforge.

We then take XMLTEX to process the generated XML-file. We had to create an output
that is as near as possible to Word’s. An effort was made to reach this goal even with
constructs such as lists, tabstops and especially tables.

Using XML as an intermediary format in typesetting RTF has the advantage that
structural transformations are much easier based on XML even if the XML ‘only’ repro-
duces the RTF as faithfully as possible.

Filtering or transforming certain objects or attributes and even correcting typesetting
errors can be done by appropriate transformations of the XML files.

1 Introduction

For a commercial project it was necessary to typeset larger documents from automatically
generated XML data with embedded references to external RTF files. It was decided to first
transform the RTF to XML and include that into the existing XML-structure, all together then
being typeset by XMLTEX.

For this, the open-source-tool Majix was extended to achieve the RTF-XML translation.
For typesetting the resulting XML an appropriate implementation using XMLTEX was created
which will be uploaded to CTAN eventually, providing another open-source way of handling
RTF with TEX.

2 Results

We begin with a RTF-File. As you can see in figure 2 OpenOffice isn’t able to handle recorded
changes to the file correctly. For example in ‘Betrag für 20042 Tsd EUR’ (first row, second
column) the ‘20042’ is meant to be a year. Originally is was 2002 but the last ‘2’ was deleted

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT09

From RTF to XML to LATEX
Stephan Lehmke, Arne Jans, Andre Dierker

51

Figure 1: We first have a RTF file. Note the mixed up old and new version of the years and
amounts. (Please ignore the font type. The used one wasn’t installed and had to be substituted
by OpenOffice)

and replaced with ‘4’. However the ‘2’ remained as old version in the RTF and and is tagged
as ‘deleted’. In opposite to Majix OpenOffice doesn’t recognise the responsible control word.

The corresponding RTF-Code is shown in figure 2. We have selected a quite readable
portion. When it comes to font management RTF isn’t readable at all.

After the conversion by Majix we get the XML-Code shown in table 2. Majix did a great
job in giving the data a meaningful structure.

The resulting PDF is shown in figure 2. As you can see there are some differences between
the OpenOffice and the LATEX version. These are the result of some filtering on the XML data
demanded by our client.

3 Filtering

Having a well-formed XML one can easily filter the data. For example harmonizing the in-
dentation of unordered lists can be done by deleting the necessary attributes in the XML and

MOT09 Preprints EuroTEX2005 – Pont-à-Mousson, France

52 From RTF to XML to LATEX
Stephan Lehmke, Arne Jans, Andre Dierker

%

\s16\qj\sa40\widctlpar\adjustright \f18\fs16\lang1031\cgrid {\expnd0\expndtw-2 Anteil, der

aufgrund Artikel 9 des Verwaltungsabkommens vom 5.\~9.\~1957 i. d. F. vom 28.\~2.\~1991 zwi

schen Bund und L\’e4ndern \’fc

ber die Err

ichtung eines Wissenschaftsrats im Haushaltsjahr 1994 voraussichtlich entf\’e4llt.

\par }\pard

\plain \s18\qc\sa40\widctlpar\adjustright \f18\fs16\lang1031\cgrid {\’dcbersicht \’fcber di

e Einnahmen und Ausgaben\line des Wissenschaftsrates

\par }\trow

d \clvertalt\clbrdrt\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \cltxlrtb \cellx1021\clvertalt\cl

brdrt\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \clbrdrr\brdrs\brdrw20 \cltxlrtb \cellx2042\clve

rtalt\clbrdrt\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \cltxlrtb

\cellx3063\clvertalt\clbrdrt\brdrs\brdrw20 \clbrdrl\brdrs\brdrw20 \clbrdrb\brdrs\brdrw20 \c

ltxlrtb \cellx4253\pard\plain \qc\sb40\sa40\widctlpar\intbl\adjustright \f18\fs16\lang1031\

cgrid {\cell Betrag\line f\’fcr 200}{\revised\revauth1\revdttm1182249745

4}{\deleted

\revauthdel1\revdttmdel1182249745 2}{\line Tsd. EUR\cell }\pard \qc\fi1\li-1\sb40\widctlpar

\intbl\adjustright {Betrag\line f\’fcr 200}{\revised\revauth1\revdttm1182249745 3}{\deleted

\revauthdel1\revdttmdel1182249745 1}{\line Tsd. EUR\cell

Istergebnis

\line 200}{\revised\revauth1\revdttm1182249745 2}{\deleted\revauthdel1\revdttmdel1182249745

0}{\line Tsd. EUR\cell }\pard \widctlpar\intbl\adjustright {\row }\trowd \clvertalt\cltxlr

tb \cellx1021\clvertalt\cltxlrtb \cellx2042

\clvertalt\

cltxlrtb \cellx3063\clvertalt\cltxlrtb \cellx4253\pard\plain \s1\sb80\sa40\keepn\widctlpar\

intbl\outlinelevel0\adjustright \b\fs20\lang1031\cgrid {\f18\fs16 Ausgaben}

Table 1: The RTF-Code looks like this

<par align="justified">

<tabdeflist>

<tabdef type="default" align="left" position="12.49mm"/>

</tabdeflist>

<parcontent>

Anteil, der aufgrund Artikel 9 des Verwaltungsabkommens vom 5. 9. 1957 i. d. F.

vom 28. 2. 1991 zwischen Bund und Ländern über die Errichtung eines

Wissenschaftsrats im Haushaltsjahr 1994 voraussichtlich entfällt.

</parcontent>

</par>

<par align="center">

<tabdeflist>

<tabdef type="default" align="left" position="12.49mm"/>

</tabdeflist>

<parcontent>

Übersicht über die Einnahmen und Ausgaben<linebreak/>des Wissenschaftsrates

</parcontent>

</par>

<table>

<tbody>

<tr>

<td width="18.0093mm" valign="top" border-top="0.0pt"

border-bottom="1.0pt" border-left="0.0pt">

</td>

<td width="18.0093mm" valign="top" border-top="0.0pt"

border-bottom="1.0pt" border-right="1.0pt">

<par align="center">

<tabdeflist>

<tabdef type="default" align="left" position="12.49mm"/>

</tabdeflist>

<parcontent>

Betrag<linebreak/>für 2004<linebreak/>Tsd. EUR

</parcontent>

</par>

</td>

<td width="18.0093mm" valign="top" border-top="0.0pt"

border-bottom="1.0pt">

<par align="center">

<tabdeflist>

<tabdef type="default" align="left" position="12.49mm"/>

</tabdeflist>

<parcontent>

Betrag<linebreak/>für 2003<linebreak/>Tsd. EUR

</parcontent>

</par>

</td>

...

</tr>

Table 2: The generated XML is much more readable

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT09

From RTF to XML to LATEX
Stephan Lehmke, Arne Jans, Andre Dierker

53

Figure 2: After processing with XMLTEX

MOT09 Preprints EuroTEX2005 – Pont-à-Mousson, France

54 From RTF to XML to LATEX
Stephan Lehmke, Arne Jans, Andre Dierker

Figure 3: A special table called VEGrid in a RTF file

providing corresponding defaults.
Another class of transformations deals with the enrichment of semantics by converting visual

markup to logical markup: one could search for special XML-constructs perhaps with specific
attributes and/or contents and replace them with a ‘meaningful’ structure.

A good example for this are the so called VEGrids. These are special tables which always
have the same layout. A typical VEGrid is shown in figure 3. The headline is always the same
as is the tablehead. In the first column there are years, the bottom row is a sum.

Usually VEGrids are already given in a XML-structure but sometimes it seems the person
dealing with the case doesn’t use the right program to input the data but uses Word to create
a RTF file with a VE-lookalike. After the XML conversion we get a noname-table as shown in
table 3. Because of the constant layout we could identify these lookalikes and exchange them
by ‘real’ VEGrids as shown in table 3.

4 Further Development

Because there was no need up to now we ignore changes of font size and type. Besides that the
management of colours wasn’t implemented yet. Perhaps these features will be implemented in
future.

As said before it is planned to release the code of the package on CTAN. The extended
version of the RTF converter Majix is already available via SourceForge.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT09

From RTF to XML to LATEX
Stephan Lehmke, Arne Jans, Andre Dierker

55

<table>

<tbody>

<tr border-bottom="0.5pt" border-left="0.5pt" border-right="0.5pt"

border-horizontal="0.5pt" border-vertical="0.5pt">

<td width="72.5135mm" valign="top" border-top="0.0pt"

border-left="0.0pt" colspan="4">

<par align="left">

<tabdeflist>

<tabdef type="default" align="left" position="12.49mm"/>

</tabdeflist>

<parcontent>Belastung (2004) </parcontent></par></td>

<td width="17.4978mm" valign="top" border-top="0.0pt"

border-right="0.0pt" colspan="2"></td>

</tr>

<tr border-top="0.5pt" border-bottom="0.5pt" border-left="0.5pt" ...>

<td width="17.5154mm" valign="top" border-top="1.0pt" ...>

...

<parcontent>

<linebreak/>der<linebreak/>Haushalts-<linebreak/>jahre

</parcontent></par></td>

...

</tr>

<tr border-top="0.5pt" border-bottom="0.5pt" border-left="0.5pt"...>

<td width="17.5154mm" valign="top" border-top="1.0pt"...>

...

<parcontent>2004</parcontent></par></td>

<td width="18.1151mm" valign="top" border-top="1.0pt"...>

...

<parcontent>553 </parcontent></par></td>

<td width="18.1328mm" valign="top" border-top="1.0pt"...>

...

<parcontent>-</parcontent></par></td>

...

</tr>

<tr border-top="0.5pt" border-bottom="0.5pt" border-left="0.5pt"...>

<td width="17.5154mm" valign="top" border-top="1.0pt"...>

...

<parcontent>Summe</parcontent></par></td>

<td width="18.1151mm" valign="top" border-top="1.0pt"...>

...

<parcontent>1 753 </parcontent></par></td>

...

</tr>

</tbody>

</table>

Table 3: The generated XML (note the numerous omissions)

<VEGRID>

<VEROW>

<VECOLUMN1>2005</VECOLUMN1>

<VECOLUMN2>553</VECOLUMN2>

<VECOLUMN3>null</VECOLUMN3>

<VECOLUMN4>null</VECOLUMN4>

<VECOLUMN5>553</VECOLUMN5>

</VEROW>

<VEROW>

<VECOLUMN1>2004</VECOLUMN1>

<VECOLUMN2>548</VECOLUMN2>

<VECOLUMN3>null</VECOLUMN3>

<VECOLUMN4>null</VECOLUMN4>

<VECOLUMN5>548</VECOLUMN5>

</VEROW>

...

<VESUMROW>

<VECOLUMN1>Summe</VECOLUMN1>

<VECOLUMN2>1753</VECOLUMN2>

<VECOLUMN3>null</VECOLUMN3>

<VECOLUMN4>null</VECOLUMN4>

<VECOLUMN5>1753</VECOLUMN5>

</VESUMROW>

</VEGRID>

Table 4: The enriched and filtered XML

MOT09 Preprints EuroTEX2005 – Pont-à-Mousson, France

56 From RTF to XML to LATEX
Stephan Lehmke, Arne Jans, Andre Dierker

TEX forever!

Jonathan Fine
Learning and Teaching Solutions

The Open University

Milton Keynes

United Kingdom

J.Fine@open.ac.uk

http://www.pytex.org

Abstract

This paper explores new ways of doing input to and output from TEX. These
new ways bypass our current habits, and provide fresh opportunities.

Usually, TEX is run as a batch program. But when run as a daemon, TEX
can be part of an interactive program. Daemons often that run forever, or at
least for a long time. Hence the title of this paper.

Usually, parsing and transformation of the input data is done by TEX macros,
with little outside help. Often, this results in input documents that only TEX
can understand. Also, TEX macros can be hard to write. We demonstrate the
replacement of TEX macros by an external program. This is done in real time.

Usually, TEX’s principal output is a dvi representation of typeset pages, for
processing by a printer driver. However, TEX’s log file or console can be used to
allow TEX to output the boxes it holds internally. (Alternatively, an extension of
TEX could write this data out in a binary form.) Shipping out boxes rather than
dvi allows an external program to do the page makeup.

Don Knuth’s original conception was that TEX would be “just a typesetting
language”. In some sense he “put in many of TEX’s programming features only
after kicking and screaming”. The developments described above reduce our
dependence on TEX macros, and so bring our use of TEX closer to Knuth’s original
conception. Doing this will greatly improve its usefulness.

Long live TEX!

Introduction

In 1990, Don Knuth told us [8, p.572] that his work
on developing TEX had come to an end. He went on
to say:

Of course I do not claim to have found the
best solution to every problem. I simply
claim that it is a great advantage to have a
fixed point as a building block. Improved
macro packages can be added on the input
side; improved device drivers can be added
on the output side.

In this paper, the author tries to follow this
advice. There are imperfections in TEX, and the lack
of proper support for Unicode fonts and filenames is
a major weakness. However, TEX also has enormous
strengths. It is archival. It carefully uses integer
arithmetic to ensure that it gets the same line and
page breaks, regardless of the machine it is running

on. Its algorithm for breaking a paragraph into lines
is reliable, adaptable and efficient. TEX is without
rival for complex mathematical typesetting.

Often, TEX is used with LATEX as the macro
package front end, and with dvips as the device
driver. Sometimes, the word ‘TEX’ is used to refer
to the whole system. However, in this paper we
mean by ‘TEX’ the typesetting program written by
Don Knuth. And so LATEX and dvips are tools for
use with TEX.

This paper is concerned with making improv-
ments on the input and output sides of TEX, both
areas of work where there is an enormous amount
still to do. However, our proposals are not exactly
macro packages and device drivers.

A note to the reader: This paper has been writ-
ten for a general audience, and in particular for those
who are not TEX experts. At the same time, discus-
sion of technical details is at times either unavoid-

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

57

1 ¶ textfile → marked up text and math
2 † text + transform → horizontal primitives
3 * horizontal primitives → hlist
4 † math + transform → math primitives
5 * math primitives + parameters → hlist
6 * hlist + parameters → vlist
7 † vlists + page make up → page boxes
8 * page boxes → sequential dvi file
9 ¶ sequential dvi file → random access dvi file
10¶ random access dvi file → rendered page

Table 1: How TEX works, in 10 stages
† usually done using TEX macros.
* usually done using TEX’s built in procedures.
¶ file input and output matters.

able or helpful. Therefore, I hope that the experts
will forgive my stating the obvious, and that the
others forgive my discussing the difficult.

References: Many of the articles cited here
have been reprinted in the collection Digital Typog-
raphy [13]. Page numbers in citations refer to [13],
and not to the original publication.

How TEX works

Table 1 gives a concise description as to how TEX
works. On the input side we propose that an exter-
nal program perform the transformation in steps 2
and 4.

On the output side we have two proposals. The
first is that (8) be replaced by:

8′. page boxes → stream of dvi pages

The second, which is more ambitious, is that
(7) be replaced by:

7′. vlist → external program

followed by page makeup in that external program.
Thus we continue to use TEX’s excellent type-

setting, but reduce the use of its macros.

TEX—just a typesetting language

TEX is a typesetting program, written by Don
Knuth, that is particular good at mathematical and
technical typesetting. TEX is reliable and stable,
and is very widely used by academic mathematicians
and physicists.

TEX has a macro programming language,
which allows features to be added. The best known
and most widely used TEX macro package is LATEX.
(This is not quite accurate. Although originally
LATEX used TEX, since 2003 it by default uses
e-TEX, which is an extension of TEX. So it is no
longer purely a TEX macro package. This has no
bearing on our discussion.)

In 1996 Don Knuth, describing his intentions
when he started to develop TEX, said [11, p.648]:

I’m not going to design a programming
language; I want to have just a typesetting
language.

and at the same time he said (loc. cit.):

In some sense I put in many of TEX’s pro-
gramming features only after kicking and
screaming. [. . .] In the 70s, I had a negative
reaction to software that tries to be all
things to all people. Every system had its
own universal Turing machine built into it
somehow, and everybody’s machine was a
little different from everybody else’s.

But the need for more features caused the program-
ming constructs to grow (see Table 2 below). See
also [16] for a ‘wish-list’ of future developments.

Therefore, by removing commands from TEX,
we can come closer to Don’s original conception of
TEX. However, for this to succeed in practice, some
other means of adding new features is required. In-
deed, one of the major problems TEX users have now
is that the existing programming constructs barely
support the demand for new features. This we dis-
cuss later.

In this section we outline how to cut TEX down
to the bare minimum. To be specific, in this sec-
tion we ask: What commands are required in order
to access TEX’s algorithm for breaking a paragraph
into lines?

To create a paragraph one needs to be able to
load fonts, change fonts, and set a character in the
current font. One also needs commands for append-
ing glue, kerns and the like to the paragraph.

To break the paragraph into lines, one needs
the \par primitive (also known as \endgraf) and a
means of assigning values to the line-breaking pa-
rameters, such as \hsize.

In other words, the basic operations are to add
an item to the current horizontal list, and to form
a paragraph out of the current horizontal list. (For
mathematics and table typesetting there are similar
basic operations.)

It should at this point be clear that certain
primitive TEX commands are not required in or-
der to do typesetting. These commands include
all the \def commands (such as \def, \chardef,
\xdef), \let, \begingroup and \endgroup. Once
category codes have been set up, there is no further
need for \catcode. And there is certainly no need
for commands such as \expandafter, \noexpand,
\aftergroup and \futurelet. All these are not

MOT10 Preprints EuroTEX2005 – Pont-à-Mousson, France

58 TEX Forever!
Jonathan Fine

Control sequence Date added

\if 21 Jun 1978

\pausing 16 Mar 1978

\uppercase 25 Nov 1978

\xdef 28 Nov 1978

\ifmmode 23 July 1978

active characters 25 Jan 1980

\let 25 Mar 1980

\ifx 13 July 1981

\catcode July 1982

\expandafter, \openin 12 Sep 1982

\string 12 Sep 1982

\immediate 12 Oct 1982

\csname, \endcsname, \fi 13 Nov 1982

\everymath, \everydisplay, 2 Dec 1982

\futurelet

\endinput 7 Dec 1982

\jobname 25 Dec 1982

\globaldefs 20 Jan 1983

\iffalse, \iftrue 3 Feb 1983

\everyvbox, \everyhbox 6 Mar 1983

\everyjob 18 Mar 1983

\advance, \multiply, \divide 25 May 1983

\noexpand, \meaning

\afterassignment 27 May 1983

\escapechar, \endlinechar 4 Jul 1983

\errhelp 11 Jul 1983

\aftergroup, \newlinechar 16 Jul 1983

\ifhbox, \ifvbox 27 Aug 1983

\holdinginserts 30 Sep 1989

Table 2: Some TEX control sequences not needed
for typesetting (after [7])

typesetting commands, and exist only to allow fea-
tures to be added to TEX.

Moreover, these commands cause difficulty for
both TEX users and programmers. Their introduc-
tion is perhaps a sign that things were starting to
go in the wrong direction.

In [7] Knuth published, in edited form, the log
books he kept while he was developing TEX. In
these, we can see the introduction of features. (See
Table 2.)

Suppose all programming commands are dis-
abled by \let-ting them be undefined, like so:

\let \afterassignment = \undefined

Provided we remove enough commands, we will
have, as Don wanted TEX to be in the first place,
“just a typesetting language”. A language without
features, and without the capability of adding
features (which is itself a feature).

Comparison with PostScript and with machine
code is instructive. Most PostScript is generated by
programs that translate from a higher-level language

down to PostScript. Similarly, much machine code
is generated by compiling ‘C’ source files.

Many of us write input files for (LA)TEX, using a
text editor. We won’t do that for a featureless TEX.
It’s too much hard work, and anyway we want to
write in a higher-level language. We are suggesting
that an external program perform the text trans-
formation that is traditionally performed by a TEX
macro package.

Improved macros — input transformation

This section could also be titled:

\let \def = \undefined

Don suggested that we add improved macro
packages on the input side. Now, a macro package
has two main purposes. One is issuing typesetting
instructions to TEX. This will create a galley (or
page of unlimited depth). The second purpose is
the output (or page makeup) routine, which breaks
the galley into pages of a suitable size.

In this section we consider the creation of a gal-
ley. Marked-up text, such as

\section{Improved macros}

is translated (by LATEX in this case) into a large
number of low-level instructions. The title

Improved macros

is scarcely translated. Each character sets itself,
and space characters produce default interword glue.
(Later, we present an example of this.)

It is \section{} that does most of the work.
Here are some of the technical details. It selects the
font to be used, and the paragraph parameters for
the title (in case it is wider than the measure). It
also places glue and penalties before and after the ti-
tle on the galley. It might also add a section number,
and record information for the table of contents.

High-level commands are being translated into
low-level typesetting instructions. This translation
need not be done by LATEX (or indeed by any other
TEX macro package). For example, in the WEB sys-
tem of literate programming, much of the work is
done using external programs. Similarly, XSLT tem-
plates are often used to transform text, prior to it
being passed to TEX to typesetting.

For over 10 years the LATEX3 project has been
working to enhance LATEX by providing [15, p.1]

a flexible interface for typographic designers
to easily specify the formatting of a class of
documents.

Such an interface might, for example, be simi-
lar to Cascading Style Sheets (CSS) for HTML. We
have seen that Don Knuth only reluctantly added

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

59

programming features to TEX. The author believes
that TEX macros are not a suitable language for cre-
ating the above interface, and that the long delay in
its delivery is evidence for this.

This interface could instead be written as an
external program. In a later section we describe
QATEX, which is a wrapper around TEX that ef-
fectively allows TEX to interact with external pro-
grams.

Improved macros — output routines

This section could also be titled:

\let \output = \undefined

One of the most interesting and best parts of
TEX is the algorithm it uses for breaking a para-
graph into lines. The algorithm for breaking the
galley into pages is not so good, although for simple
technical material it is more than adequate.

In this paper we do not suggest improved out-
put algorithms (we have discussed this elsewhere
[4]). Instead, we describe a solution to a related
problem. The TEX macro language is not a suit-
able environment for the writing of complicated page
makeup algorithms. Here we describe a means of
moving the problem to another domain.

The galley produced by TEX consists of a ver-
tical list. This vertical list consists of boxes, glue,
penalties, and so forth (see The TEXbook, page 110
for a complete list). The \showlists command
prints a detailed description of the content of this
vertical list.

The output of \showlists can parsed by an
external program, and used to reconstruct within
that program the vertical list created by TEX. If
the external program can also send low-level type-
setting instructions to TEX, then TEX in effect has
become a callable function available to the external
program. (As in QATEX, the interactive console or
more exactly stdin and stdout can be used for this
communication.)

This is not a completely new idea. In 1996, Jǐŕı
Veselý asked [10, pp620–621]:

Once I was asked about the possibility to
make a list of all hyphenated words in the
book. I was not able to find a way in your
book to do this.

To this, Don replied (loc. cit.):

This would be easy to do now in a module
specially written for TEX. I would say that
right now, in fact, you could get almost
exactly what you want by writing a filter
that says to TEX “Turn on all the tracing
options that cause it to list the page con-

tents.” Then a little filter program would
take the trace information through a UNIX
pipe and it would give you the hypenated
words. It would take an afternoon to write
this program; well, maybe two afternoons . . .
and a morning.

We develop this idea later in the paper.

Instant Preview and TEX as a daemon

This section could also be titled:

\let \end = \undefined

Interactive programs typically require a re-
sponse time of less than a tenth of a second, while
a response in a hundreth of a second is seen as
instantaneous.

On my current 800 MHz PC, the command

$ tex story \\end

takes about 0.137 seconds, while

$ tex \\end

takes 0.133 seconds. The first command typesets
a small page of material; the second does nothing
but start TEX and then exit. Thus, typesetting the
small page takes about 0.004 seconds.

It follows from this that typesetting material for
Instant Preview is tolerable if the start-up time is
included, while it will be perceived as instantaneous
if TEX is run as a daemon.

Running TEX as a daemon is an example of
TEX forever. We wish for TEX to start up when the
computer boots, and to remain running indefinitely.
Moreover, we might prefer that there were only a
single instance of the TEX daemon running.

Documents and macro packages may have to
be adapted, to make the most of Instant Preview.
The key concept seem to be this: That the source
file be partitioned into regions by markers, which we
call ‘belays’, and that the macro package be able to
typeset each region independently. In other words,
that the macro package support random access type-
setting. This is, again, an example of TEX being en-
hanced by an improved macro package on the front
end.

The author has already written [5] about
Instant Preview. At the conference he hopes to
demonstrate the latest progress.

Decorating dvi files

TEX has no built-in notion of colour, or of graphics
inclusion. However, the \special command allows
device drivers to produce special effects. By decora-
tion we mean the application of colour, change bars
and the like to the rendered page.

MOT10 Preprints EuroTEX2005 – Pont-à-Mousson, France

60 TEX Forever!
Jonathan Fine

In the domestic setting, decoration of a room
or a house does not move the walls or make other
structural alterations. In typesetting, adding deco-
ration should not affect typesetting decisions, such
as the line breaks and the placement of items on
the page. (This is not to say that the typographic
design should not take into account the subsequent
application of decoration.)

The current practice regarding decoration is to
use a fairly simple dvi processor, and to have the
(LA)TEX macro package place appropriate \special

commands into the dvi file. From the point of view
of a device-driving dvi processor, this is probably
correct. It seems that, historically, low-level capa-
bilities were added to device drivers. Then macro
packages were written to access these new features.

From the point of view of the macro package,
this approach is probably wrong. As already noted,
decoration should not affect typesetting decisions.
This is an important property, whose fulfilment
should be central to the approach taken.

Suppose, for example, that some text is to be
printed in a spot colour. Placing a \special at the
start or end of a word does not affect its hyphen-
ation. Therefore something like

% usage: \color{red}{Text to go in red}

\def\color#1#2{%

\special{push #1}%

#2%

\special{pop}%

}

will suffice, at least in the simplest cases.
However, a page boundary might break the red

text. This places a burden on the dvi processor,
to keep track of this information. Typical dvi pro-
cessors allow random access to the pages in the dvi

file. Having to look at previous page(s) breaks this
random access.

The solution we suggest is to write a dvi-to-dvi
filter that resolves these random access problems.
Such a filter is not, of course, a device driver, but it
can be used with any device driver. Its purpose is to
translate high-level specials into low-level specials.

TEX is being held back by the weakness of tools
for decorating text. For example, a common require-
ment is to place a background rectangle behind a
paragraph of text. If the paragraph is broken over
two pages, the background rectangle should be sim-
ilarly broken.

In 1987 Don Knuth and Pierre MacKay dis-
cussed a similar problem, namely implementing
bi-directional typesetting without extending TEX.
They wrote [14, p159]:

How can we get TEX to do this? The best ap-
proach is probably to extend the driver pro-
grams that produce printed output from the
dvi files that TEX writes, instead of trying to
do tricky things with TEX macros.

In the same article [13, p161] they then produced a
“much more reliable and robust scheme by building
a specially extended version of TEX”.

QATEX— or ask a friend a question

TEX is a typesetting language, with limited text-
processing and other capabilities. Things that are
easy to do in other languages are hard to do in TEX.
Examples are to find the dimensions of an EPS or
other graphics file, or to calculate the sine and cosine
of an angle, so that space can be left for rotated text.

Traditionally, such questions have been an-
swered by writing TEX macros. The author finds
that TEX macros are not a suitable language for
such text manipulation tasks.

Here is an extract from the \Gread@eps macro
in the LATEX file graphics.sty.

\immediate\openin\@inputcheck#1 %

\ifeof\@inputcheck

\@latex@error{File ‘#1’ not found}%

\@ehc

\else

\Gread@true

\let\@tempb\Gread@false

\loop

\read\@inputcheck to\@tempa

\ifeof\@inputcheck

\Gread@false

\else

\expandafter\Gread@find@bb

\@tempa:.\\%

\fi

\ifGread@

\repeat

\immediate\closein\@inputcheck

\fi

The author has developed QATEX, which allows
the TEX macro programmer to ask another process
to answer questions. Such as: What is the bounding
box of myfile.eps?

QATEX (pronounced ‘kwa-tech’) provides a dif-
ferent route. Questions and answers are the essence
of QATEX. When QATEX is used, lines such as:

!Q=qatexlib.eps.bbox(myfile.eps)

!A=0,0,0 0 35 97

appear in the TEX’s log file.
The first line is a question, produced using a

\write command. The second line is the answer.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

61

The characters !A= are a prompt, produced using a
\message command.

The remainder of that line is the answer to the
question. The prefix 0,0, tells TEX that the ques-
tion was successfully posed and answered. There
follows the information asked for. This information
is supplied by a process external to TEX.

TEX uses \read -1 to \temp to read this in-
formation from its stdin stream. So far as TEX is
concerned, this data might have come from the user.
In fact, it has come from a program, namely QATEX.

QATEX works as follows. It is a wrapper progam
that invokes TEX, and takes control of its standard
input and output. When it sees a question line, fol-
lowed by the answer prompt, it parses and answers
the question, then sends the answer to TEX, using
TEX’s standard input. However, QATEX does not
answer the question itself. It imports a module — in
the example above the eps module —to answer the
question for it.

Here is the definition, in Python, of a function
that returns the bounding box of an EPS file, as a
string. If not found, it raises an exception. It took
me less than 10 minutes to write. It would be part
of a eps module for use with QATEX.

File: qatexlib/eps.py

_bb_prefix = '%%BoundingBox: '

def qa_bbox(filename):

f = open(filename)

for line in f:

if line.startswith(_bb_prefix):

sizes = line.split()[1:]

return ' '.join(sizes)

msg = "File '%s' has no bounding box"

raise Exception, msg % filename

Alternatives and complements to QATEX

In this section we compare QATEX to shell escape,
eval4tex, PerlTEX, sTeXme and Pymacs. Each of
these has some similarity with QATEX.

Shell escape. Modern implementations allow TEX
to issue shell commands, as if they had been typed
at a command prompt. This allows, for example, a
command such as makeindex to be run after TEX
has processed the body of a document, but before
setting the back matter.

However, it also allows other commands to
be run, such as the deletion of files. And TEX
documents can execute arbitary TEX commands.
(Strictly speaking, this is not true. For example, in
Active TEX [3] all characters are active. This allows
a macro package to prevent execution directly from
a document of all but specified commands.)

Often, TEX documents are distributed in source
form. If shell escape is enabled, the typesetting a
document could result is a shell escape command be-
ing run, that finds and deletes all your files. Clearly,
shell escape is a security risk. For this reason, shell
escape is disabled by default, and is rarely used.

Even without shell escape, TEX macros and
therefore documents can overwrite existing files.
(TEX has no inbuilt ability to delete files. But it
can destroy their contents.) Therefore, modern
implementations of TEX refuse to open for writing
files that are not in or beneath the current directory,
or a similarly specified area.

This restriction is not applied to the reading of
files. Therefore, it is possible for a TEX document,
when typeset, to include in it other files. These other
files might be confidential.

Therefore, in line with the theme of TEX being
“just a typesetting system”, it might be sensible to:

\let \openout = \undefined

\let \openin = \undefined

\let \input = \undefined

and have another program take responsibility for se-
curity. The security monitor could then send mate-
rial to be typeset to TEX’s standard input stream.

eval4TEX (by Dorai Sitaram) is a two-pass process
that allows TEX to send expressions to Scheme for
evaluation [1]. It provides a \eval macro, that is
used as below. (The example is Sitaram’s, and my
exposition follows his).

\eval{(display (acos -1))} % gives pi

On the first pass, the Scheme code

(display (acos -1))

is written to an auxiliary file, together with some
indexing information.

Before the second pass, a helper program
eval4tex runs Scheme on the auxiliary file, to cre-
ate a second auxiliary file. On the second pass, the
\eval command picks up values from the second
auxiliary file, and refreshes the data in the first.

As Sitaram writes:

This strategy is quite common in the TEX
world. The popular TEX-support programs
BibTeX and MakeIndex, which generate bib-
liographies and indices respectively, both op-
erate this way.

sTeXme (by Oleg Paraschenko) is another ap-
proach to integrating TEX with Scheme [19]. Here
is his summary of the goals of the project.

The (LA)TEX macro language was a great de-
velopment when it appeared, but now it is

MOT10 Preprints EuroTEX2005 – Pont-à-Mousson, France

62 TEX Forever!
Jonathan Fine

too out-of-date. Programming in TEX is a
fun, but more often it is a pain.

As it seems for me, only very few people
can write (LA)TEX macros, but a lot of people
would like doing it (like me, for example).
This is the problem.

One of the solutions is to provide another
scripting language for TEX. That’s what is
the goal of the sTeXme project. It should
provide the Scheme programming language
as a TEX scripting language.

This project has two parts, namely an extension
to TEX, that allows it to interpret Scheme code, and
an extension to Scheme that allow it access TEX
internals. We say more on this later.

PerlTEX (by Scott Pakin) uses standard Perl and
TEX without extensions [17]. Here is his summary
of the goals of the project.

TEX is a professional-quality typesetting
system. However, its programming language
is rather hard to use for anything but the
most simple forms of text substitution.
Even LATEX, the most popular macro pack-
age for TEX, does little to simplify TEX
programming.

Perl is a general-purpose programming lan-
guage whose forte is in text manipulation.
However, it has no support whatsoever for
typesetting.

PerlTEX’s goal is to bridge these two
worlds. It enables the construction of
documents that are primarily LATEX-based
but contain a modicum of Perl. PerlTEX
seamlessly integrates Perl code into a LATEX
document, enabling the user to define macros
whose bodies consist of Perl code instead of
TEX and LATEX code.

Here is Scott Pakin’s equivalent to \eval:

\perlnewcommand{\reversewords}[1]

{join " ", reverse split " ", $_[0]}

\reversewords{TeX forever!}

PerlTEX, like QATEX, invokes TEX under the
control of a separate process. Unlike QATEX, it does
not take control of TEX’s standard input and out-
put. Invoking \reversewords causes TEX to write
material to a specially named file. This file corre-
sponds to the question in QATEX. The controlling
Perl process then computes the answer to the ques-
tion, and writes it to another specially named file.
Meanwhile, the TEX process goes into a loop, to poll
for the existence of the answer file. Once found, it
is \input by TEX.

PerlTEX seems to have a performance problem.
On my 800 Mhz PC, the following example:

\documentclass{article}

\usepackage{perltex}

\perlnewcommand{\nothing}{}

\begin{document}

% I’ve got plenty of nothing ...

\nothing\nothing\nothing

\nothing\nothing\nothing

\nothing\nothing\nothing

\nothing % 10 nothings

% We’re busy doing nothing ...

\end{document}

takes about 3.0 seconds to execute. This includes
startup time. (On the same machine, it takes QATEX
about 1/3000 seconds to do nothing once.)

Here is at least a partial explanation. Instru-
menting the code for PerlTEX shows that in compil-
ing the above document, TEX polls for the existence
of the helper file approximately 5,000 times. The
exact number varies. Adding:

\input nothing % input an empty file

to the polling loop reduces the time taken to about
1.8 seconds, and reduces the number of pollings to
about 500. The UNIX nice command could also
help here.

Pymacs (by François Pinard) is not a way of using
Python with TEX. It is a way of using Python with
the Emacs editor [18]. To quote its author:

Pymacs is a powerful tool which, once started
from Emacs, allows both-way communication
between Emacs Lisp and Python. Pymacs
aims Python as an extension language for
Emacs rather than the other way around, and
this asymmetry is reflected in some design
choices. Within Emacs Lisp code, one may
load and use Python modules. Python func-
tions may themselves use Emacs services, and
handle Emacs Lisp objects kept in Emacs
Lisp space.

Pymacs is mentioned because is was higly in-
fluential on the author’s approach to the integration
of TEX with a scripting language. (At that time,
Python had not been chosen.)

Different approaches compared

In the previous two sections we looked at QATEX,
shell escape, eval4tex, sTeXme and PerlTEX. In
this section we make some comparisions.

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

63

Philosophy QATEX is like shell escape, in that sim-
ple queries are sent to another process. The other
approaches assume that complex code will be writ-
ten within, or otherwise produced by, TEX macros.
This code is then evaluated by another program.

For example, in QATEX the problem of revers-
ing words might result in the following conversation
between TEX and the external process:

!Q=qatexlib.string.reverse(TeX forever!)

!A=0,0,forever! TeX

The question sent to QATEX could not be along
the lines of: “What is the result of evaluating this
complex Perl or Scheme expression?” However, such
is not the expected use. Rather, it is expected that
TEX will send a short and simple query. If the an-
swer is long, it could be placed in an external file.
Once that is done, TEX can be told, as the answer,
that the file is ready to be \input (assuming \input

is still defined).

Architecture The architecture of the implementa-
tion of PerlTEX is closer to that of eval4tex than
that of sTeXme. Perl code is placed in the body of
TEX macros, and this code is sent out to Perl for
evaluation. Unlike sTeXme, and like eval4tex, it
does not require either an extension to TEX or a
special version of the command interpreter for the
extension language.

PerlTEX is similar to QATEX in that TEX is run
under the control of an external program. However,
QATEX uses standard input and output for commu-
nication, whereas PerlTEX polls named files.

QATEX provides an efficient and portable low-
level interface between TEX and an external process.
PerlTEX is a higher-level package. There is no rea-
son why the QATEX interface, or something similar
to it, should not be used by PerlTEX, so as to im-
prove performance. The same applies to eval4tex,
where using this interface would remove the need for
a second run. It would also provide better interac-
tion.

Security Any process that evaluates code supplied
by a document will expose a security problem, un-
less the code evaluator is already secure (as in Java,
for example). PerlTEX provides security by using
a secure Perl sandbox. QATEX provides security by
having TEX (and thus the document) supply only
data.

Of course, any program that evaluates un-
trusted data as if it were trusted code has a security
issue. If it is necessary to evaluate safely untrusted
code, then a secure sandbox is required. This is
the key security issue. QATEX is a small interface

application, which does not attempt to solve this
problem. There is no reason why QATEX should not
be used with such a secure sandbox. But that is a
matter for the developer who builds upon QATEX.

Integration and extension Of all the projects
considered in this section, sTeXme is the most
ambitious. It involves making major extensions to
TEX, to produce a new program, called sTeXme.

The new name is necessary. TEX experts will
already know that Don Knuth does not object to
the sources of TEX the program being used as the
basis for creating a superior program. However, he
is most insistent that programs that are not TEX
must not be called TEX. More exactly, in [8, p572]
he wrote:

That is all I ask, after devoting a substan-
tial portion of my life to the creation of these
systems and making them available to every-
body in the world. I sincerely hope that the
members of TUG will help me to enforce these
wishes, by putting severe pressure on any per-
son or group who produces any incompati-
ble system and calls it TEX or Metafont or
Computer Modern — no matter how slight
the incompatibility might seem.

This insistence on the stability and consistency
of TEX is, in this author’s view, a significant contri-
bution to its longevity. Users know what to expect,
and get what they expect, when they use TEX.

Regarding the scope of his new program
sTeXme, Oleg Paraschenko reports:

[. . .] Scheme code can be executed from
TeX and that Scheme code can access TeX
internals (getting a string from the TeX
string pool, getting a macro definition as the
Scheme list).

The source file stexmelib.c on the Source-
Forge repository indicates that Paraschenko is
building a C-coded Scheme extension, in which
equivalents to TEX boxes and the like can be stored.
This indicates that there are many points of contact
between his project and the next section.

PyTEX

The goal of the PyTEX project is to combine Python
programming with TEX typesetting. To understand
this, think of Tcl/Tk: Tcl is a scripting language
and Tk is a toolkit for building GUI programs. Perl
and Python also have interfaces to Tk, allowing
them to use Tk when building GUI programs.

Now think of LATEX as LA/TEX. LA is a front end
to the TEX typesetting program written in TEX’s

MOT10 Preprints EuroTEX2005 – Pont-à-Mousson, France

64 TEX Forever!
Jonathan Fine

macro language. PyTEX, or Py/TEX if you prefer, is
to be a front end to TEX written in Python.

PyTEX replaces the part of TEX that Don
Knuth said he did not want to write, namely the
TEX macro programming language, with something
more widely used. Our aim is to provide an alter-
native means of programming typesetting decisions
and logic. This will make TEX easier to use.

Here is an example of the interface. We are in
Python, and wish to typeset a paragraph of text,
namely

The cat sat on the mat.

to a measure of 6 picas, which is about one inch
(or 25 millimetres). This is a toy example. After
typesetting the paragraph, we wish to bring it into
Python for page makeup.

To see how this is done, issue the command

$ cat cat_sat.tex | tex | grep ’^[.\]’

where the source stream is

% cat_sat.tex

\tracingonline 1

\showboxbreadth \maxdimen

\showboxdepth \maxdimen

\scrollmode

\setbox0\vbox{%

\hsize 6pc

The cat sat on the mat.\par

\showlists

}

The annotated output of the grep is:

This is an annotation.

Start of the first line of paragraph.

\hbox(6.94444+0.0)x72.0, glue set 0.58331

indentation box, 20pt wide

.\hbox(0.0+0.0)x20.0

The word "The".

.\tenrm T

.\tenrm h

.\tenrm e

normal interword glue

.\glue 3.33333 plus 1.66666 minus 1.11111

The word "cat".

.\tenrm c

.\tenrm a

.\tenrm t

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm s

.\tenrm a

.\tenrm t

Zero width line filling glue.

.\glue(\rightskip) 0.0

Penalty for breaking page at this point.

\penalty 300

Interline glue.

\glue(\baselineskip) 5.05556

Start of second line of paragraph.

\hbox(6.94444+0.0)x72.0, glue set 20.88878fil

.\tenrm o

.\tenrm n

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm t

.\tenrm h

.\tenrm e

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm m

.\tenrm a

.\tenrm t

.\tenrm .

Inserted by TeX, for internal reasons.

.\penalty 10000

Allow the last line of para to be short.

.\glue(\parfillskip) 0.0 plus 1.0fil

.\glue(\rightskip) 0.0

This is a complete description of the paragraph
formed by TEX’s line breaking algorithm.

This is the essence of the interface between
Python and TEX. Material is sent to TEX to be
typeset, say using stdin. The \showlists command
is used to write the results to stdout, from which
they are picked up by Python.

On the input side, Python is responsible for
parsing the input stream, and placing appropriate
items on the horizontal list. It is also responsible
for ensuring that nothing inappropriate is placed on
the list. The whole process should not generate TEX
errors (although warnings about overfull boxes and
so forth are welcome).

On the output side, Python parses the output
stream, and from it reconstitutes the boxes that TEX
has formed, thus forming a Python object.

In Python code, our example might look like

hlist = Hlist() % new horizontal list

text = "The cat sat on the mat."

hlist.extend(text)

vlist = hlist.linebreak(hsize=6*pica)

where hidden in the call to the linebreak() method
there is a sending of data to TEX, and a reconstruc-
tion in Python of the boxes that TEX built. From
here on, the output or page-makeup routine can be
written in Python. Note that cat_sat.tex invokes
no TEX macros.

Conclusions

In the 15 years since TEX has been frozen, very few
deficiencies have been found in the algorithms it
uses for breaking a paragraph into lines, for type-
setting mathematics, and for setting tables. Since
1990 there has been little (but valuable) progress in

Preprints EuroTEX2005 – Pont-à-Mousson, France MOT10

TEX Forever!
Jonathan Fine

65

the area of Unicode fonts, for which an extension
of TEX genuinely is needed. TEX was written to
be archival, and it is holding up well after its first
quarter-century or so.

There are many problems in our use of TEX.
This paper has discussed several:

• coloured text and other decorations,

• interactive use of TEX,

• input transformation,

• programming page makeup.

All of these arise not out of TEX itself, but out of
the way in which we use TEX.

There is an irony in our use of TEX macros.
Recall that when Don was looking at the design of
TEX he found that: [11, p.648]:

Every system I looked at had its own uni-
versal Turing machine built into it somehow,
and everybody’s machine was a little differ-
ent from everybody else’s.

He then went on to say:

I was tired of having to learn yet another
almost-the-same programming language for
every system I looked at; I was going to try
to avoid that.

What we have now with TEX macros is a Turing
machine very different from any other. This is just
what he wished to avoid. However, QATEX provides
a powerful complement to existing TEX macro pack-
ages, and PyTEX will use TEX as “just a typesetting
language”, which is what Don wanted it to be in the
first place.

In 1996, Piet van Oostrum asked Don Knuth
about TEX’s macro programming language [11,
p648–9]:

I don’t know if you have ever looked into the
LATEX code inside, but if you look into that,
you get the impression that TEX is not the
most appropriate programming language to
design such a large system. Did you ever
think of TEX being used to program such
large systems and if not, would you think of
giving it a better programming language?

In response to this, Don Knuth said (loc. cit.):

It would be nice if there were a well-
understood standard for an interpretive
programming language inside an arbitary
application. Take regular expressions— I
define UNIX as “30 definitions of regular
expressions living under one roof.” [laughter]
Every part of UNIX has a slightly different
regular expression. Now, if there were a

universal simple interpretive language that
was common to other systems, naturally I
would have latched onto that right away.

The theme of this paper is TEX typesetting with
fewer macros. We use instead a “simple interpretive
language”, namely Python. If we learn to use TEX
in new ways, and take good care of it, TEX will be
good for its second quarter-century.

Long live TEX!

References

[1] eval4tex, http://www.ccs.neu.edu/home/

dorai/tex2page/eval4tex-doc.html

[2] Jonathan Fine, Editing .dvi files, or Visual
TEX, TUGboat, 17 (1996), 255–259

[3] , Active TEX and the DOT input syntax,
TUGboat, 20 (1999), 248–254

[4] , Line breaking and page breaking, TUG-
boat, 21 (2000), 210–221

[5] , Instant Preview and the TEX daemon,
EuroTEX 2001 Conference Proceedings, 49–58

[6] , TEX as a callable function, EuroTEX 2002
Conference Proceedings, 26–35

[7] Donald E. Knuth, The Errors of TEX, Soft-
ware—Practice and Experience, 19 (1989), 607–
685. (Reprinted in [9])

[8] , The Future of TEX and Metafont,
TUGboat, 11 (1990), 489 (Reprinted in [13])

[9] , Literate Programming, CSLI (1992)

[10] , Questions and Answers II, TUGboat, bf
17 (1996), 355-367 (Reprinted in [13])

[11] , Questions and Answers III, MAPS
(Minutes and APpendiceS), 16 1996, 38–49
(Reprinted in [13])

[12] , The future of TEX and METAFONT,
TUGboat, 11 (1990), 489 (reprinted in [13])

[13] , Digital Typography, CSLI (1999)

[14] Donald E. Knuth & Pierre MacKay, Mixing
Right-to-Left Texts with Left-to-Right Texts,
TUGboat, 8, (1987), 14–25. (Reprinted in [13])

[15] Frank Mittelbach & Chris Rowley, The
LATEX3 Project, http://www.latex-project.

org/guides/ltx3info.pdf

[16] NTG TEX future working group, TEX in 2003:
Part I Propositions and Conjectures on the Fu-
ture of TEX, MAPS (Minutes and APpendiceS),
21 1998, 13–19

[17] PerlTEX, http://www.ctan.org/

tex-archive/macros/latex/contrib/

perltex

[18] Pymacs, http://pymacs.progiciels-bpi.ca

[19] sTeXme, http://stexme.sourceforge.net

MOT10 Preprints EuroTEX2005 – Pont-à-Mousson, France

66 TEX Forever!
Jonathan Fine

The TEI/TEX Interface

Sebastian Rahtz

February 28, 2005

Abstract

In the view of many people, the natural way to prepare a typeset document is to use LATEX
or ConTEXt. It produces high-quality output, the source document is a clean mixture of text and
markup, and it works on any computer. For another group of people, however, the natural way to
proceed is to prepare a validated XML document which can be used to either make a web page or
to make a printed document. One choice of an XML encoding for this group is the Text Encoding
Initiative (TEI) scheme.

This paper is in two parts. The first part examines the arguments for and against authoring
in XML, rather than TEX, and demonstrates how some common TEX situations are catered for in
TEI XML.

The second part of the paper examines how, if we do choose XML, we can continue to harness
the power of TEX. We examine the four main routes of

a) using a modified TEX to read XML directly;

b) translating XML direct to high-level TEX;

c) translating our XML to another XML which is functionally identical to LATEX and then trans-
lating that; and

d) translating XML to an XML-based page description language (XSL FO), and processing that
with TEX.

None of these is completely satisfactory, and we end by considering what hope there is for the
future.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT01

The TEI/TEX Interface
Sebastian Rahtz

67

LATEX3 News

Frank Mittelbach Chris Rowley

The main purpose of this event is to introduce the human side of the LATEX3 Team and to explain what we
are doing, both collectively and individually, to support and promote LATEX and automated typography.

Here is a summary of the team’s recent, current and planned activities.

• General News

– LATEX Project Public License

– The project Web site

• Maintenance

– Fixing standard LATEX

– Helping packages work better with each other

• LATEX3 Code — work in progress

– Web access to experimental LATEX3 code
at http://www.latex-project.org/cgi-bin/cvsweb.cgi/

– The next version of the LATEX3 Programming Language, expl3
at http://www.latex-project.org/cgi-bin/cvsweb.cgi/experimental/expl3/

– Progress on xpackages (e.g., xor learns to balance)
at http://www.latex-project.org/cgi-bin/cvsweb.cgi/experimental/xpackages/

– Plan to provide full core and typical extensions based on expl3 and the template mechanism

• Work at this conference

– Investigate TEX extensions and quasi-TEX ‘extensions’ and their consequences for LATEX

– Investigate ‘Unicode font technologies’ (XeTEX and friends) possibly including ‘Unicode-encoded
math chars/glyphs’

– Work on language interface design

There will be plenty of opportunity for questions and discussion of our plans.

TUT02 Preprints EuroTEX2005 – Pont-à-Mousson, France

68 LATEX3 News
Frank Mittelbach, Chris Rowley

The 16 Faces of a Dutch Math Journal

Hans Hagen

Abstract

Much of what ConTEXt originally provided originated from our daily needs, at that
time dictated by educational consultancy and course development. However, the last
couple of years most features find their origin in the demands of publishers, users as well
as an occasional ”Let’s see (prove) if TeX can do it (better)”. One of those users is the
Dutch Math Society (NAW).

Quite a while ago the Dutch Math Society decided to restyle their journal and the
decision was made to use ConTEXt as typesetting engine, one reason being its ability to
typeset on a grid and place graphic in columns. Since it happened in the early days of
ConTEXt, some of the demands resulted in rather complex and often weird macros.1

Advanced mixed font support, magazine-like column features, tight integration with
MetaPost, flexible placement of elements etc. are nowadays supported in the kernel in
a more natural way, if only because the core of ConTEXt has become more flexible and
mature. And so the moment has come to let the editors switch to the reimplemented
journal style.

In this talk I will illustrate how needs by demanding users like the Dutch Math Society’s
Journal have brought ConTEXt to where it stands today and is heading tomorrow.

1These were written by Taco Hoekwater, who did a pretty good job, as proven by the fact that up to date
these macros are still in use.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT03

The 16 Faces of a Dutch Math Journal
Hans Hagen

69

Typographic Perfection with OpenType?

Adam Twardoch

February 26, 2005

Abstract

In September 1999, Adobe Systems declared their PostScript Type 1 font format "obsolete". Until then,
this font format was dominating the professional pre-press and printing business, but now was to be replaced
with OpenType – a font format developed by Microsoft and Adobe, with collaboration from Apple. Four and
a half years later, OpenType is a fact: both the world’s largest font foundries and individual type designer
publish new fonts in this format.

OpenType fonts have numerous advantages: they can be used in many operating systems without any
conversions (Windows 9x/2000/XP, MacOS 9/X, some Unix environments); they use the universal character
encoding standard Unicode; finally, they can include typographic layout features that allow for comfortable
use of ligatures, small caps, swash alternates or old-style numerals, as well as more advanced functionality
such as justification alternates.

You may have heard that Unicode is the only solution for the encoding mess in electronic text processing.
You may have also heard that OpenType is the new cross-platform font format that enables unprecedented
typographic perfection. Adam Twardoch will present these technologies and discuss how much truth and
how much myth these promises hold.

Bio:
Born 1975 in Poland, Adam now lives in Frankfurt (Oder), at the German-Polish border. He is Scripting

Products and Marketing Manager at Fontlab Ltd., an international software vendor specializing in font
editors and typography products. He serves as typographic consultant to MyFonts, a major online font
distributor. Adam provides consulting services in font creation, font tool development, font technology and
multilingual typography for Adobe, Bitstream, Corel, Linotype, Microsoft and other clients. Adam regularly
writes and lectures about fonts and typography. He is member of Association Typographique Internationale
(ATypI) and of the Polish TEX Users’ Group (GUST).

TUT04 Preprints EuroTEX2005 – Pont-à-Mousson, France

70 Typographic Perfection with OpenType?
Adam Twardoch

Namespaces for εXTEX

Gerd Neugebauer

October 31, 2004

Namespaces for TEX are a long awaited extension. In this talk the require-
ments for such an extension are described. Namespaces primarily restrict
the visibility of macros and active characters. Thus the probability of name
clashes is reduced. As addition one can imagine to apply namespaces to other
entities like registers, catcodes etc as well.

εXTEX is an attempt to reimplement TEX. The major goals behind the
reimplemenbtation are a modular and configurable structure tailored towards
experiments and extensibility.

Fortunately the integration of namespaces can be located at very few places
in the εXTEX architecture. As a consequence an implementation idea for
εXTEX can be sketched and the experimental implementation in εXTEX is
shown.

1 Introduction

With the vast amount of packages emerging on CTAN the need came up to separate the
packages. In other programming languages this is accomplished by using namespaces
– sometimes also called modules or packages. The classical TEX system lacks such a
mechanism.

In this proposal an analysis is provided which shows where modifications of a TEX-
like system are necessary to implement namespaces. The proposed solution tries to be
minimalistic. This means that one goal is to change the underlying system as few as
possible. In addition existing TEX code should continue to work without any change.

2 Encapsulation

The primary requirement for namespaces is that they encapsulate the internals of “mod-
ules”. This means that each information about the state is hidden in the outside world.
The access is enabled via well-defined interfaces only.

In this document the focus is put onto namespaces for control sequences and active
characters.

3 Backward Compatibility and Initialization

The namespace extension should be backward compatible. This means that the be-
haviour of the system should not depend of the use of a namespace. This can be achieved
by using a default namespace in any case where no other namespace is specified.

On the other hand the definitions in the namespace should be properly initiated. Thus
we want to ensure that the namespaces can be used without the burden of too much
initialization.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT05

Namespaces for εXTEX
Gerd Neugebauer

71

4 Definition of Namespaces

The definition of the current namespace is just a string to be kept somewhere. In terms
of TEX it is advisable to store the current namespace as tokens in a special tokens register
to allow read and write access to it.

Consider the name \namespace for this toks register then the following instruction
can be used to advice TEX to set the appropriate namespace:

1 \namespace{tex.latex.dtk}

The default namespace should be denoted by the empty toks register:

1 \namespace{}

The wellknown primitives \the and \showthe can be used to get access to the current
value of the namespace:

1 \namespace{tex.latex.dtk}
2 \the\namespace

5 Communication between Namespaces

Namespaces provide a means for separation of different modules. Thus we need a way to
communicate between namespaces. For this purpose we want to provide a primitive to
declare that a certain set of entities are visible from the outside. All entities not declared
to be visible are purely private.

The primary entities to consider are macros and active characters. They are charac-
terized by tokens. Thus we can again use a token list to keep this information.

Consider the name \export for the names toks register. Then the following example
declares that the macros \abc and \xyz and the (active) character ~ can potentially be
accessed non-locally:

1 \export{\abc \xyz ~}

The other side of communication is the import of the exported entities into another
namespace. In analogy to the name export we want to call this functionality import.
For the import it is sufficient to name the namespace to be imported:

1 \import{tex.latex.dtk}

The semantics is that all entities exported by the namespace – i.e. contained in the
toks register \export – are assigned to in the current namespace as well. This is similar
to a multitude of let invocations.

As a consequence of this definition the meaning of a macro can be changed in the
defining namespace without affecting the meaning in the importing namespace.

6 Namespaces and Groups

Since the main task of the declarations if performed by special tokens registers it is clear
that the namespaces are coherent with the groups structure already present in TEX.

In the following example the macro a is defined in the namespace tex. Since the group
ends afterwards the namespace returns to its previous value. Thus the definition of \y
is performed in the outer namespace.

TUT05 Preprints EuroTEX2005 – Pont-à-Mousson, France

72 Namespaces for εXTEX
Gerd Neugebauer

1 \begingroup
2 \namespace{tex}
3 \gdef\x{123}
4 \endgroup
5 \def\y{123}

One question which arises is, how the macro \import interacts with the grouping.
The answer to this question is that the import should influence the current group only.
Similar to the definition of \let the prefix command \global can be used to indicate
that the imports should be applied globally instead of locally in the current group:

1 \global\import{tex.latex.dtk}

The macro \import has to take into account the \global prefix.
Another inference of namespaces and groups can be seen in the following example:

1 \begingroup
2 \namespace{one}
3 \global\export{\x}
4 \gdef\x#1{-#1-}
5 \endgroup

Note that the \export declaration is preceded by a \global modifier. Consider the
case that this modifier would not be there. Then the end of the group would revert the
meaning of \export the previous binding. In general this would destroy the intended
meaning. The \general modifier ensures that the intended meaning of \export survives
the end of the group and can be used in subsequent imports.

7 Namespaces and Expansion

Let us consider the following example where a macro with an argument is exported:

1 \namespace{one}
2 \begingroup
3 \namespace{two}
4 \global\export{\x}
5 \gdef\x#1{-#1 \y-}
6 \gdef\y{in one}
7 \endgroup
8 \import{one}
9 \def\y{two}

10 \x\y

The intuitive meaning of the last expression \x\y is that \y is taken from the names-
pace two and \y is taken from the outer namespace one. Now we follow the expansion
of \y. It leads to

-\y \y-

where the first \y comes from the argument. As such it is rooted in the outer names-
pace one. Whereas the second \y is defined in the namespace two.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT05

Namespaces for εXTEX
Gerd Neugebauer

73

As we can conclude that the namespace has to be attached to the token. Then the
two tokens can be expanded in their original namespaces. To illustrate this we use the
namespace as subscript to the macro name. With this convention we have the following
tokens in the situation above:

-\yone \ytwo-

With this refined understanding we can come to the conclusion that the expansion
will indeed lead to the expected result:

-two in one-

8 Explicit Expansion without Import

In several programming languages there is the possibility to invoke a method in another
namespace. With the means we have depicted so far we can achieve the same effect:

\begingroup\namespace{tex}\expandafter\abc\endgroup

This construct can even be used to expand a macro which is not exported. Since it is
in general not a good idea to use this feature no provision is made to provide a shortcut
for such an expansion.

In this document a minimalistic approach has been proposed. To provide some syn-
tactic sugar would require some more adaptions to the basic machinery. Since all basic
requirements can be fulfilled within the minimalistic approach it has net been considered
worthwhile to explore these adaptions any further.

9 Namespaces and the Basic Definitions

Usually nobody actually starts with iniTEX since nearly no definitions and settings are
defined in it. At least something like the plain definitions are used. With the means
given in the previous sections each new namespace would start out like a new iniTEX
instance.

To solve this problem, we define a fallback strategy for the resolution of control se-
quences and active characters. If a definition is not found in the current namespace then
the definition is taken from the default namespace.

The default namespace is denoted by the empty token list. Initially the namespace is
set to the default namespace.

With this definition it is possible to load the some macros into the default namespace
– e.g. the plain definitions. Then they are availlable in any namespace unless redefined
in it.

10 Implementation in εXTEX

εXTEX (http://www.extex.org) is a project to provide an implementation of a type-
setting system based on the ideas of TEX. It is designed to be highly configurable and
should provide a base for extensions and experimentation. As a starting point a TEX
compatibility mode is provided.

TUT05 Preprints EuroTEX2005 – Pont-à-Mousson, France

74 Namespaces for εXTEX
Gerd Neugebauer

11 Namespaces for Registers

In the current extension of εXTEX the registers are not affected by the namespaces.
Nevertheless it might be desirable to extend namespaces to registers.

For instance count registers can be made aware of namespaces. Then each names-
pace can have its own incarnations of count registers. The extensions into this direc-
tion is straight forward. Experiments into this directions have been performed within
εXTEXṄevertheless they where not really convincing. The plain format makes use of
several count registers. The adaption of the visibility of count registers would require
adaptions on the macro level as well.

The restrictions to a limited number of count registers has already been relaxed in
εTEX and in εXTEX even further. Thus with the use of the allocation macros it is no
problem to have separate registers in separate modules – even when namespaces are
used.

12 Conclusion

In the previous sections we have seen how a basic namespace support has be integrated
into εXTEX. The changes required for this extension are restricted to very few modi-
fications in the core components. These modifications provide a base upon which the
externally visible extensions can act. The extensions are purely optional – to be enabled
in a configuration file or even loaded dynamically within εXTEX. Without the definitions
of the three new primitives the behaviour of εXTEX has not been changed.

The base mechanism for the use of namespaces is provided. Now it is up to the macro
level to make use of it.

According to the considerations in the previous sections we need the following addi-
tions to εXTEX:

• The definition of tokens and their factory have to be extended to carry the names-
pace.

• The group has to be extended to provide means to store the current namespace.

• The binding mechanisms for control sequences and active characters needs to be
extended to take into account the fallback to the default namespace.

• The primitive \namespace has to be provided which allows the reading and writing
access to the namespace stored in the group.

• The primitive \export has to be provided to allow access to a special tokens
register in the current namespace.

• The primitive \import has to be provided which is similar to the implementation
of \let. New bindings for the exported control sequences or active characters have
to be introduced to reference the definitions in the defining namespace.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT05

Namespaces for εXTEX
Gerd Neugebauer

75

contextgarden.net

Patrick Gundlach

February 25, 2005

Abstract

The goal of the contextgarden.net project is to enhance the documentation of ConTEXt. It consists of
several web services that together provide the technical framework behind the documentation. A large (and
growing) percentage of the supplied content is actually provided by the visitors of the interconnected web
sites.

1 Introduction

Many users have tried the LATEX-alternative ConTEXt. But more than a few have given up almost right at the
start, simply because they didn’t know how to proceed any further. Unnecesarily so, since there is an active
user group that is very helpful. And there is a vast amount of information and documentation on ConTEXt
readily available. One just has to find it.

2 What is available?

The official documentation for ConTEXt is available on the web server of PRAGMA ADE1. There, you will find
many PDF-files that can answer your questions as well as show you some interesting possibilities of typesetting
with ConTEXt. There are two distinct ways to access the documentation on the web site.

The first possibility is to use PDF-based navigation. Just select showcase on the web site of PRAGMA
ADE, and you will get a hierarchical overview of all available PDF-documents. The navigation itself shows
some aspects of the vast possibilities of ConTEXt. This makes it plain to see that it will be worth having a
closer look at the program, even before you have read the first document!

The second possibility is to is to select overview on the web page. This will present you with a rather simple
listing of the available files based on their category. You can see all available manuals and some supplementary
documentation at a glance.

The novice user should definitely have a look at the beginner’s manual ConTEXt, an excursion and, after
that, ConTEXt, the manual.

Besides these two important documents, there are different sets of manuals:

manuals This is the most important set of documentation files. Besides the beginner’s manual and the main
manual, there are manuals dealing with XML processing, grid-based typesetting, stepcharts, MetaFun and
MathML, and more.

magazines This relatively new set describes smaller aspects of ConTEXt and typesetting. A specific volume,
for example, is about formatting digits, and another volume is about hiding parts of section titles inside
running heads.

qrcs quick references. Each one of these documents contains a list of all available user level commands within
a language interface. For every command, its general syntax is described along with the list of allowed
parameters and keywords, but nothing else.

sources sample documents with source code. Currently this set consists mainly of the presentation styles that
are shipped with ConTEXt. The source of these styles is also well documented using TEX comments.

technotes At the moment there is only one article about graphic inclusion and positioning in PDF available.
1http://www.pragma-ade.com

TUT06 Preprints EuroTEX2005 – Pont-à-Mousson, France

76 contextgarden.net: The ConTEXt Wiki
Patrick Gundlach

uptodate like the special documents in the section manuals, the uptodate documents are about specific issues
in ConTEXt. There are manuals about flowcharts, tables, typesetting Chinese and JavaScript. Nowadays
most of the uptodate documents are renamed and put into the manuals section.

3 What is missing?

Considering the great number of manuals, it may sound strange that there could be something missing. But
those who look at the manual will probably notice that it lacks a chapter about typesetting tables. There is a
section about a simple table variant (tabulate), but it is not explained in any detail. Another variant (table)
appears often in the examples, but a more helpful explanation is missing. And it lacks an overview of the many
different options that can be used when trying to typeset a table.

Another thing you will not find in the printed manuals are practical hints. Things like installation issues,
design discussion, tricky problems that are due to misunderstanding or misconfiguration, et cetera.

Yet another problem is that the descriptions in the manuals are partly outdated. The uptodate (or the
descendants) are, despite their name, already several years old. And because the development of ConTEXt
is quite fast, the descriptions of the commands are often incomplete and in some areas, even the underlying
concepts have changed. You can only keep track of these things by keeping an eye on the mailing list and
watching the changes in the ConTEXt distribution.

Moreover, because there are so many documents, you can actually lose the grand picture. Where are the
rules for grid typesetting? What line separators am I allowed to use in tabulate? The answers are spread
throughout the documents. A global index would be helpful.

A specific request that frequently arises on the ConTEXt mailing list is the lack of sample documents with
source code. On the web pages of PRAGMA ADE you can download a few: the magazines (ThisWay); the
pdfTEX manual; and the commented sample presentation styles. But for many users this is not sufficient.

Yet another issue that some users are unhappy about has nothing to do with documentation. ConTEXt
is not perfectly supported by the TEX-distributions, although the situation has greatly improved over the last
years. “Just” trying out ConTEXt sometimes fails because the local distribution lacks some files or because it
contains a way too old version of ConTEXt. At present there is a change in the TEX directory structure in web2c
and accordingly a change of the directory layout of ConTEXt. This brings a whole new set of compatibility
problems.

4 In the garden

With the project contextgarden.net, I provide some applications and web services that jointly try to address
the problems mentioned above. Right now, the following services are available: the wiki, texshow-web, live
ConTEXt, source browser and archive. The services are all linked from the main page.2 contextgarden.net is
kindly sponsored by DANTE e.V., the German TEX user group.

4.1 Wiki

A wiki is a service, where the visitors of the web page create content. Every visitor can add, change and delete
the web pages. The following definition is taken from the wikipedia, a free encyclopedia that is based on the
same principle:3

A Wiki or wiki (pronounced “wicky” or “weekee”) is a web site (or other hypertext document
collection) that allows a user to add content, as on an Internet forum, but also allows that content to
be edited by any other user [. . .] Wiki wiki comes from the Hawaiian term for “quick” or “super-fast”.

On every wiki page there is a button labeled “edit”, that lets you modify the page content. The wiki syntax
is simple, plain ascii text with some extensions for mark-up, such as = for heading and *, # for items in an
unordered and ordered list respectively. The following example should be easy to understand for all LATEX and
ConTEXt users.

2http://contextgarden.net
3http://en.wikipedia.org/wiki/Wiki

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT06

contextgarden.net: The ConTEXt Wiki
Patrick Gundlach

77

== This is the main title ==
Every page should begin with an introductory
paragraph.

* first item in an unordered list
* and the second

<code>
an environment like verbatim or \starttyping ...
\stoptyping
</code>

A table of contents is inserted automatically if there are enough headings on a page.
The main application on contextgarden is a wiki especially for ConTEXt. Its content is mainly filled by only

a few, but quite active, users of the site. There are about 100 pages on the different topics that cannot be
(easily) found in the manuals. One of the most obvious differences between the wiki and the manuals is that
in the wiki, you can find practical texts like installation experiences and overviews such as a list of text editors
with ConTEXt support. Every user can upload TEX and PDF files to the site, and therefore the wiki is a good
platform for the publication of sample documents.

One of the important features in a wiki is that you can get a list of recent changes. This leads to a pragmatic
way of editing content: one user creates a page on a specific subject, that is not perfectly worded nor 100%
complete yet. Afterwards, other users complete this page by supplying their own knowledge on the subject. As
a result, the quality of the page increases over time.

Even news items are put into the wiki. For example, the users can see the list of included changes whenever
a new ConTEXt distribution is released. The wiki was started around July 2004. In the long term it should be
a full complement to the official manuals.

The wiki on contextgarden has several features that makes it well suited for ConTEXt documentation. One
extension is the direct rendering of ConTEXt input. Taking the following input:

<context>
\defineoverlay

[tea]
[{\green \ss \bf GREEN TEA }]

\framed [height=40pt,
background=tea,
align=middle]%

{\em today \blank for sale}
</context>

you get

GREEN TEA
today

for sale

The wiki internally passes the text to ConTEXt to be typeset. This creates a PDF file from the input, and
then the wiki calls on ghostscript to convert this PDF file to a PNG image. The end result is that you can view
the typeset example directly from within your web browser.

Also included is a pretty printer for TEX and XML source. This formats and colors source code for readability.
Perhaps you are familiar with this behaviour from your text editor. The final extension to the wiki is the ability
to create hyperlinks to texshow-web (see below). With

<cmd>adaptlayout</cmd>

a link will be created. When that link is clicked, the page that contains the definition of the command adaptlayout
within texshow-web will be opened.

TUT06 Preprints EuroTEX2005 – Pont-à-Mousson, France

78 contextgarden.net: The ConTEXt Wiki
Patrick Gundlach

4.2 texshow-web

texshow-web is an alternative implementation of the perl/Tk program texshow that comes with every ConTEXt
distribution.

What follows is a quick summary for those of you who are unfamiliar with texshow : This program gives an
overview of all user commands. The full set of the parameters and arguments belonging to a specific command
can be shown in a syntactical overview, like this one:

\adaptlayout[...,...,...][...,...=...,...]

[...,...,...] number

height dimension max
lines number

The output is colored, so that you can easily see what parameters you can use in each argument. In this
example the first parameter accepts a list of numbers whereas the second parameter takes a list of assignments.
Allowed keywords for the assignment are height and lines, and the allowed values for height are a dimension or
the word max and for lines a number (within TEX’s limits of course).

The new web-based variant, texshow-web makes it possible to add a comment, a description and any number
of examples to the a specific command. Of course texshow-web also offers a full-text search, so that you can
find the command you need with more ease. As with the wiki, all users have the possibility to complete missing
information or to correct pages when needed.

ConTEXt users often struggle because one not only has to know all of the possible parameters for a command
by name, but one also has to understand their effects on typesetting. In the manuals the parameters are only
partly described. For example, there is no explanation of the parameter beforehead in an itemize environment.
That is why texshow-web has a field description where this kind of information can be stored. Currently, there
are only a few entries with that additional content, but progress is slowly being made.

The original texshow program from the distribution has recently been adapted to show all the comments,
descriptions and examples from texshow-web as well, but does not allow editing.

Features currently in development are: a way of categorizing commands into logical units (graphic inclusion,
section and headers, typographic commands), a multi-lingual user interface, and documentation for ConTEXt’s
programming interface (API). The API documentation will cooperate with the source browser (see below) that
shows the definition of the commands within ConTEXt’s source code.

Until now, texshow-web has only been used for ConTEXt documentation. But it should be possible to use it
for LATEX documentation without big difficulties.

4.3 Archive

There were already several searchable archives for the ConTEXt mailing list: the NTG has one and the news-mail
portal Gmane has one as well. Slavek Zak used to host one, too. There are some other, less popular, archives
as well. But none of the those is complete as well as easily searchable. Therefore I have installed yet another
mailing list archive at contextgarden.net. This one is almost complete, very quick and searchable. The two new
lists are also archived on this server: the ConTEXt developer list and the foxet (a ConTEXt based XML-FO
processor) list.

4.4 Live

Live ConTEXt is an on-line ConTEXt typesetting service. You type your document into a web-form and after you
submit the form to the server, your source gets processed by texexec and typeset. The resulting pdf document
as well texexec’s screen output can be viewed online or saved to your harddisk. This makes it possible to use
ConTEXt without actually installing it. The underlying TEX system uses the latest teTEX beta and ConTEXt
distribution. Live ConTEXt is also used as a sort of reference installation. Errors that do occur on a local
system but cannot be reproduced on Live ConTEXt are most likely a local problem only.

4.5 Source

With the source browser you can view ConTEXt’s source code. Using a simple navigation system you have access
to the almost 600 files from the current distribution. This is especially interesting to the programmers that

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT06

contextgarden.net: The ConTEXt Wiki
Patrick Gundlach

79

need to see the definition of the commands. The included full-text search helps finding commands. You can ac-
cess the definition of the commands via hyperlinks: http://source.contextgarden.net/tex/context/base/
core-pos.tex#setpositions and http://source.contextgarden.net/core-pos.tex#setpositions points
to the definition of setpositions, without having to know the line number in advance.

5 Future work

The services mentioned here are provided by contextgarden.net. The most important one is certainly the wiki.
Until now it was not necessary to structure the information in the wiki. If it continues to grow as it did in
the past, a more formal structure will be necessary. texshow-web should become the preferred reference for the
ConTEXt commands. The resources provided by texshow-web will be used by the existing tools (texshow) and
documentation in future releases. Because the number of descriptions, comments and examples is still low, the
ConTEXt community is asked to fill in the missing information.

Currently a search engine is in development that allows the user to search texshow-web, the wiki, the manuals
and the mailing list archive all from one place. This should provide an even more powerful tool in your quest
to find the necessary information.

TUT06 Preprints EuroTEX2005 – Pont-à-Mousson, France

80 contextgarden.net: The ConTEXt Wiki
Patrick Gundlach

Experiences with micro-typographic extensions
of pdfTEX in practice

Hàn Thé̂ Thành
University of Education,

Ho Chi Minh City,
Vietnam

February 21, 2005

Abstract

pdfTEX provides two micro-typographic extensions: margin kerning (also known as char-
acter protrusion) and font expansion. Those extensions have been available for a while,
however they are not used much yet, probably due to their complicated setup and not
that visible benefits they bring. In this article I want to share some experiences, either
good or bad, in using those extensions in practice, the tricky parts of them and how to
get the best from what pdfTEX offers without having to know all the low-level details and
messy font issues.

1 Introduction

Font expansion and margin kerning have been introduced several times in various articles, so I
won’t go to any detailed description here. From a practical point of view, what those extensions
bring is pretty simple:

1. Margin kerning makes the margins of text look smooth, by moving certain characters out
to the margins by a small amount. The most common case is to move the hyphen character
or punctuation marks, but applying this technique to certain letters also improves the
result.

2. Font expansion can help to improve line-breaking. Typically, a text typeset using font
expansion has:

(a) less hyphenations,

(b) less overfull and underfull boxes,

(c) more equal inter-word spacing ,

(d) reduced occurrence of “rivers”.

These benefits are most visible in difficult cases, like narrow-column typesetting, disabled
hyphenation, or simply in automated typesetting when manual work needed to correct
problematic cases should be minimized or totally avoided.

1

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT07

Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

81

Margin kerning and font expansion have been implemented in the hz program by Hermann
Zapf and URW; that’s why I called them together hz extensions of pdfTEX1. For more detailed
information on margin kerning and font expansion, including background and related works on
hz extensions in other systems, please refer to [Thành 2001]. From now, by hz extensions I
mean margin kerning and font expansion in pdfTEX.

2 How to start using hz extensions

Similarly as in the case with TEX primitives, the hz extensions as provided by pdfTEX are not
easy to use. They require the understanding how certain concepts in TEX work at the very
low-level, as well as the ability to set up some complicated font-related stuff. Thus the best way
to start using hz extensions is via some available interface. An article about how to start using
hz extensions in practice will be published in TUGboat soon so I don’t go into the details here.
In short, given that we have pdfTEX version at least 1.20a (1.21a is recommended at the time
of writing this paper) and the LATEX package microtype installed, it’s enough to say

\usepackage{microtype}

to activate both margin kerning and font expansion. A recommended next step is to read the
microtype manual to learn more about the options the package offers, as well as advice for new
users.

3 Practical experiences

hz extensions have been used rarely in practice, due to the lack of an easy interface and the
necessity of complex font setup as mentioned above. Also, those features are not completely
mature yet. For those reasons, a collection of practical issues would be helpful for those inter-
ested in using hz extensions. Some of the issues described here may sound very technical, or
very weird to those who have not tried to use hz extensions in pdfTEX yet. If it is the case,
simply skip the details you don’t understand.

So far, the total number of people who have contacted me to discuss some issue concerning
hz extensions is about ten. Some of them use hz for some occasional projects, some use hz for
their regular work. Of course it doesn’t have to mean that only ten people have been using hz
extensions; it only means that at least ten people tried and had some trouble.

Recently, ConTEXt and LATEX (the pdfcprot and microtype package) make hz extensions
easier to use and become more popular, especially margin kerning. The introduction of auto
expansion is also a big step toward easy use of font expansion.

3.1 Using the auto expansion feature

To deploy font expansion, the expanded TFM fonts must be prepared ahead, using some utility
as fontinst, afm2tfm or METAFONT. This is the most annoying part, even for experienced
users. And usually this annoyance is doubled by the fact that most TFM’s must be used with
VF, hence the expanded VF’s must be created as well.

1The hz program is in fact a set of modules implementing certain micro-typographic improvements including
margin kerning and font expansion. hz extensions of pdfTEX are only a small subset of the modules in the hz
program

TUT07 Preprints EuroTEX2005 – Pont-à-Mousson, France

82 Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

From version 1.20a, pdfTEX supports a feature called auto expansion, which allows TFM
and VF to be expanded automatically in memory at run time. That means expanded TFM
and VF are no longer required, which is a great relief. In order to use font expansion now,
it’s enough to upgrade pdfTEX binaries, install the LATEX microtype package, and that’s it. No
need to deal with expanded TFM’s and VF’s, map files or whatever. This feature makes things
really simple. The implementation however is not that simple and it took some time to evolve
and mature.

There is one catch in using virtual fonts with auto expansion: in virtual fonts accented
characters are often drawn as composition of two glyphs, a base letter and an accent. Using
auto expansion will cause the accent in such composed glyph to be misplaced by a small amount
(0.01–0.1pt).

Now one may wonder whether auto expansion should be used in case all the expanded
TFM’s and VF’s already exist (most likely because the user had to create them manually when
auto expansion was not available yet). The answer is if DVI output is not considered (see the
next issue) and only Type 1 fonts are being used, auto expansion should always be used. This
is also the typical case.

3.2 Using hz extensions in DVI mode

hz extensions are available in both PDF and DVI mode. Using hz in DVI mode is much similar
to PDF, although it requires some extra setup for dvips to process the expanded fonts. If only
margin kerning is used, then there is no difference whether it is used in DVI or PDF mode.

The question is why one would want to use hz in DVI mode? There are some known reasons:

1. the output is smaller: in PDF mode pdfTEX embeds many instances for a single expanded
font, while dvips embeds only one;

2. the document requires PS processing, for example PStricks;

3. the user just doesn’t need or like PDF, but wants hz .

The following (typical) example demonstrates how to make dvips process DVI files with font
expansion enabled. It only makes sense to people who can already make some setup to use font
expansion in PDF mode without auto expansion, which means that you must be able to create
the expanded TFM’s and VF’s using fontinst or afm2tfm or some similar tool. The detailed
instructions on how to do that is however out of scope of this article.

Assume that we have activated font expansion for font cmr12 with stretch limit 20, shrink
limit 20 and expansion step 5. To process the DVI file produced using this setup, we must
update the map entry read by dvips. In my system, the entry for cmr12 is

cmr12 CMR12 <cmr12.pfb

Now it must be replaced by

cmr12 CMR12 <cmr12.pfb

cmr12+5 CMR12 "1.005 ExtendFont" <cmr12.pfb

cmr12+10 CMR12 "1.010 ExtendFont" <cmr12.pfb

cmr12+15 CMR12 "1.015 ExtendFont" <cmr12.pfb

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT07

Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

83

cmr12+20 CMR12 "1.020 ExtendFont" <cmr12.pfb

cmr12-5 CMR12 ".995 ExtendFont" <cmr12.pfb

cmr12-10 CMR12 ".990 ExtendFont" <cmr12.pfb

cmr12-15 CMR12 ".985 ExtendFont" <cmr12.pfb

cmr12-20 CMR12 ".980 ExtendFont" <cmr12.pfb

Then dvips can process the DVI with expanded fonts just like any other DVI files.
The main disadvantage of DVI mode is, however, that the auto expansion feature of pdfTEX

cannot be used. Or to be more precise, auto expansion can be activated in DVI mode and
pdfTEX can create the DVI file with font expansion enabled. Such a DVI file however is pretty
useless because DVI drivers cannot process that file, as they don’t have access to the expanded
TFM’s and VF’s (those exist in pdfTEX memory at run time only).

There have been requests to support auto expansion for use with dvips, by changing pdfTEX
to write the expanded TFM’s and VF’s to disk as well as to update some map files. It is
likely that this will never be implemented. The better way to do that is to change the script
TEX (pdfTEX) calls to create missing TFM at run time (on web2c-based systems this is called
mktextfm) to create all the required stuff on demand.

3.3 Margin kerning and non-character material

Margin kerning only works with characters. Sometime we need to protrude something that is
not a character, for example some superscript (index), because such a thing would look bad
when ending up at the margin without protrusion. The typical example is the index of footnote,
which is typeset into an hbox.

There are two solutions to the above problem:

1. Make margin kerning work even with characters inside boxes. A patch has been made
to check whether the ending element of a line is a box, and if so check the last element
of that box, and so on, to ensure that the last character inside boxes will get protruded.
This patch is still experimental at the time writing this article. Also beware that it is
not enough just to have this patch and the right package loaded, because the default
settings for margin kerning as provided by macro packages are suitable for normal text.
Superscript text often has much smaller size than the normal text, so to get the right
result the protrusion factors must be increased. Then it might cause conflicts in other
places where the same font is used for normal text (for example in footnote text).

2. Append a “virtual character” immediately after the material we want to protrude into the
right margin (or prepend in case of the left margin). Such a virtual character is not visible,
has no dimension, but has non-zero protrusion factor so when ending up at the margin
it will get protruded. Creating such a virtual character is quite easy using fontinst.
There is also a script available to generate a virtual font with all blank characters for
this purpose2. This approach has been used several times in practice and is reliable. The
drawback is that it requires some extra work in creating those virtual characters and
inserting them into the right places.

2The script was made by Hartmut Henkel, however having read the draft version of this paper he suggested
to distribute the font itself; so the font will be available at pdftex.sarovar.org soon.

TUT07 Preprints EuroTEX2005 – Pont-à-Mousson, France

84 Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

3.4 Margin kerning does not work in some cases

Sometimes it happens that margin kerning doesn’t work as expected, some characters are not
protruded. There are usually two reasons:

1. Margin kerning is blocked by some invisible material around the relevant character; usually
there is a workaround using macros.

2. It is a bug in pdfTEX. If your pdfTEX is older than 1.20b then upgrading pdfTEX is
the first thing to consider when encountering some problem with hz extensions. Margin
kerning has been improved a lot from version 1.20b.

3.5 Using margin kerning and font expansion at the same time

Although this seems something evident, sometimes it doesn’t work. The reason is most likely
that you are using pdfTEX version 1.20a, which has this bug.

3.6 Reasonable settings for font expansion

Font expansion must be used with care. While it gives more room for line-breaking, it can also
destroy the whole text if the effect of font expansion becomes visible. Then the question is when
font expansion becomes visible? This question has no definitive answer, as to trained eyes font
expansion can be easily detected and hence annoying, while to others it has no effect. For most
people the safe limit is 2% expansion, i. e. the stretch and shrink limit when expanding a font
should not be more than 20 (see pdfTEX manual for explanation of stretch and shrink limit).

The expansion step is usually set to 5. A too small value leads to large output size (more
fonts embedded), while a too big value can lead to some surprises like unexpected overfull
or underfull boxes. This is not a bug but a limitation in the way pdfTEX implements font
expansion.

4 Lessons learned

During the development of hz extensions, many decisions were made and not all of them were
good. pdfTEX started as an experimental project. Most decisions in the beginning were made
rather for the purpose to examine the effect of hz extensions than for practical purpose. Then
hz extensions started to be used in practice and certain things had to be changed to make life
easier. Here are some lessons I learned concerning hz extensions:

1. The way margin kerning can be used without changing existing fonts seems to be the right
decision. Settings for margin kerning should be part of fonts just like kerning between
pairs of characters, from the viewpoint of clean design. Doing so however would lead to
two problems:

(a) to use margin kerning, we need some kind of extended TFM;

(b) the settings cannot be changed easily.

These problems would make practical use of margin kerning impossible. Clean design is
important but sometime backward compatibility and flexibility play a more significant
role.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT07

Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

85

2. The concept of font expansion in pdfTEX was quite general and flexible, which was good
for experiments as we needed to study the effect of font expansion in as many cases as
possible. From the experimental viewpoint the way font expansion was implemented is not
that bad, but from practical viewpoint it is too cumbersome and hard to deploy. Hence
for practical use, a less flexible mechanism which is easier to use but offers 80% of what
font expansion can give is more needed. That’s the reason why auto expansion has been
introduced.

So was it a bad decision that pdfTEX needed expanded TFM for font expansion? For
experimental purpose it was a good decision, however it would be a mistake not to change
it after the experiments have been done.

3. The user interface is as important as the implementation to end users. Without LATEX or
ConTEXt support, hz extensions are pretty useless to most users.

4. Feedback and help from the pdfTEX user community is vital for hz extensions to evolve
and mature.

5 Recent changes

pdfTEX version 0.14h is the last version of pdfTEX released by me during my stay in Czech
republic. Then I came back to Vietnam and didn’t have time to work on pdfTEX for about two
years. During that time pdfTEX was maintained by the pdfTEX team (lead by Hans Hagen and
Martin Schröder). Since March 2004 I came back to work on pdfTEX development, and version
1.20a is the first release I participated in after the long break.

Here I would like to give a brief summary of some noticeable changes since version 1.20a, as
I think that they might be of interest to pdfTEX users or simply to those who don’t use pdfTEX
but want to keep an eye on what is happening with pdfTEX. Apart from those, there have been
many small bug fixes and improvements but they are too technical to mention here.

1. hz extensions have been significantly improved; some serious bugs have been fixed and
margin kerning has been extended to handle some special cases.

2. Auto font expansion has been introduced: expanded TFM’s are no longer required to use
font expansion.

3. The font expansion mechanism has been simplified: the font expand factor (the last argu-
ment of \pdffontexpand) is no longer supported. This parameter was used to simulate
font expansion using letter spacing. Experiments have shown that this technique is not
the way to go: it didn’t improve much the result while it caused many troubles.

4. Support for the configuration file pdftex.cfg is gone; all parameters are set via primi-
tives. Their values can be dumped to the format file. The only exception is \pdfmapfile:
its value cannot be dumped to the format file, so when pdfTEX starts the value of
\pdfmapfile is always set to the default value "pdftex.map".

5. pdfTEX uses the GNU libAVL library to speed up certain searchings.

6. Support for TrueType fonts has been improved, allowing refering to glyphs inside a True-
Type font by their unicode index. ttf2afm also has been heavily revised.

TUT07 Preprints EuroTEX2005 – Pont-à-Mousson, France

86 Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

7. There is a program called pdfxTEX, which is a variant of pdfeTEX that contains experi-
mental features. Those features may be moved to pdfTEX when they seem to be useful
and stable. At the moment the following extensions are avaiable:

• \pdflastximagecolordepth returns the last color depth of a bitmapped image;

• \pdfximage supports a keyword colorspace following an object number represent-
ing a PDF ColorSpace object;

• \pdfstrcmp compares two strings;

• \pdfescapestring and \pdflastescapedstring provide a means to escape strings;

• \pdffirstlineheight, \pdflastlinedepth, \pdfeachlineheight and
\pdfeachlinedepth allow fixing line dimensions during paragraph buiding;

• various extensions from Taco Hoekwater:

– support for dimension unit px;

– \tagcode primitive allowing read and write access to a character’s char_tag

info.

– \quitvmode primitive quits vertical mode;

6 Pending requests and future development

In this section I would like to mention shortly some issues that have been discussed and the
future plan of pdfTEX.

PDF inclusion with annotations: when pdfTEX includes a PDF figure, all the annotations
(the PDF term for hyperlinks and the like) from the figure are lost. There is a patch for
pdfTEX version 1.10b by Andreas Matthias that copies annotations from included PDF
figures. The patch was released during the period when I was not maintaining pdfTEX
and didn’t get attention from other pdfTEX maintainers either. I am aware of the patch
but did not look into the code yet. If this becomes urgent or frequently asked then it
should be re-considered.

Implement virtual fonts using Type 3 fonts: pdfTEX supports virtual fonts in the same
way like other DVI drivers does, i. e. it interprets the DVI commands from virtual fonts
to draw characters. It means that accented characters from virtual fonts are often un-
searchable – in fact there are no such letters in the PDF output but sequences of PDF
commands drawing the base letter and the accent. There have been requests to make
letters from virtual fonts searchable. One possible solution is to implement virtual fonts
as Type 3 fonts in PDF. This feature is something very handy to have, as it can allows
other nice things as well. At the moment this feature is still being examined, and might
be supported in the future if the effort required to implement it is not too much.

Support for subfont scheme for use with huge TrueType fonts: Subfont scheme is
a trick to split huge TrueType fonts (usually used for Asian languages like Chinese,
Japanese or Korean) into smaller pieces so that they can be used with 8-bit TEX. pdfTEX
has some support for subfont scheme, but still very poor. At the moment this is being
revised and should be improved in the near future.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT07

Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

87

Support for pdfsync: pdfsync is a package allowing synchronization between a PDF file cre-
ated by pdfTEX and its LATEX source: the user clicks on some point in the PDF file and
the editor “jumps” to the corresponding place in the source. The current implementation
of pdfsync still has some unsolved issues, due to the lack of low-level support in pdfTEX.
We had some discussions with the pdfsync author and I plan to provide some hooks to
support pdfsync.

7 Acknowledgments

Too many people helped pdfTEX development in various ways, so it is impossible to thank all
people here without missing someone. However, I would like to say thanks to a few people
whose impact on pdfTEX is most vital in the last years:

1. Hans Hagen for his testing, discussions, feature requests, feedbacks and encouragement;

2. Hartmut Henkel for his important contributions on pdfTEX development and maintenance,
especially in hz extensions;

3. Martin Schröder for his effort on keeping pdfTEX in sync with latest sources of libraries
and other pieces of TEXLive and teTEX; he is also responsible for official pdfTEX releases;

4. and NTG and DANTE for financial support on this work.

References

[Thành 2001] Hàn Thé̂ Thành, Margin Kerning and Font Expansion with pdfTEX, in:
TUGBoat, vol. 22(2001), no. 3 – Proceedings of the 2001 Annual Meeting, pp. 146–148.
(Online at http://www.tug.org/TUGboat/Articles/tb22-3/tb72thanh.pdf)

TUT07 Preprints EuroTEX2005 – Pont-à-Mousson, France

88 Experiences with Micro-Typographic Extensions of pdfTEX in Practice
Thành Hàn Thế

Newmath and Unicode

Johannes Küster*

Abstract

The “Newmath” project aims at defining and implementing new standard encodings for
math fonts, and at the development of accompanying tools and packages. Switching math
fonts should be made as easy as switching text fonts. The project stopped in , as efforts
were concentrated on the definition of Unicode codepoints for mathematics.

This article outlines my ideas for further development of Newmath. It deals mainly
with the “encodings and fonts” part of the project. Originally the project aimed only at
extending and reorganising the encodings of existing math fonts, but its objectives should
be widened now to Unicode math – to make all those mathematical characters accessible
and usable in TEX-based systems. The last section gives an outlook on LatinModern Math
fonts development.

Introduction

About  years ago, theMath Font Group (MFG) started a project to define new standard encod-
ings for TEX math fonts, together with the development of fonts implementing this new standard
and of accompanying tools and packages. The new encodings should bring an extension to 
codepoints per font. They should become the standard for TEX math fonts, ideally making it just
as easy to switch between different math fonts as it has been achieved for text fonts. This whole
project is called “Newmath”, short for New Math Font Setup (“newmath.sty” is the name of the
principal LATEX package implementing the new math font setup).

The development of Newmath stopped about  years ago, as it was decided (at the EuroTEX
conference in St. Malo, I think) to concentrate efforts first on “Math into Unicode”, i.e. to identify
all mathematical symbols in (reasonable) use and to get these symbols encoded in the Unicode
standard. This goal has been achieved for quite a while now, mainly with Unicode . in ,
but work on the Newmath encodings has not been resumed since (mainly because the people
originally involved quit the project meanwhile).

Is further development of Newmath still interesting at all, despite Unicode and OpenType
fonts? I think it is, for the reasons discussed below. But its initial objectives should be widened:
to make all Unicode math characters accessible in TEX in a standard way, but also to make math
fonts easier to design or to adapt, and to make them more usable for other typesetting systems.

* info@typoma.com; http://www.typoma.com
 The Math Font Group is a joint venture of the LATEX project and the TEX Users Group Technical Working Group

on Extended Math Font Encoding. For more information see the Math Font Group’s homepage [].

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode
Johannes Küster

89

Current State of Newmath

Partial implementations of the new Math Font Encodings, information about the development
of Newmath, links to articles, conference presentations, mailing list archives etc. can be found at
the MFG homepage []. The development of Newmath stopped in  with version .a. The
implementation was mainly done by Matthias Clasen with Ulrik Vieth.

Currently six encodings are defined:

– Math Core (MC) contains Math Italic, Greek Upright and Italic, basic delimiters and other
“alphabetic” characters (i.e. most of the characters which are really dependent on the font
design and/or which are most likely to pre-exist in a text font)

– Math Symbol Principal (MSP) contains a Calligraphic (or Formal Script) alphabet, the
most important mathematical symbols, and basic accents

– Math Symbol  (MS1 or MSA) contains a Blackboard Bold (or “Doublestroke”) alphabet
and additional mathematical symbols

– Math Symbol  (MS2 orMSB) contains a Fraktur (or Blackletter) alphabet, some additional
delimiters and accents, and an “Arrow Kit” (consisting of left and right arrow endings and
repeatable middle parts (with negated and gapped versions), by which a great variety of
different arrows at any desired length can be composed)

– Math Extension Principal (MXP) contains text and display versions of big operators and
integrals, wider version of basic accents (hat and tilde), the larger and extensible versions
of the basic delimiters, larger root symbols, over- and underbrace parts, parts for extensible
vertical arrows and bars

– Math Extension  (MX1 or MXA) contains additional big operators and integrals, larger
and extensible versions of delimiters, and wider accents (vector, bar, tie, etc.).

Each of the Symbol encodings contains a complete alphabet (A-Z, a-z, digits -, dotless i and j)
of a specific design for use in mathematical typesetting.

Compared with TEX’s original “Math Extension” encoding, the new extension font encodings
offer a much wider range of wide accents ( sizes of each accent) and large delimiters ( sizes in-
stead of  for most delimiters,  for parentheses and non-extensible delimiters like angle brack-
ets, plus extensible parts as necessary).

UnicodeMath

Since version ., Unicode assigns almost . codepoints for mathematical characters. Due
to the way in which Unicode evolved, and as new versions should be backward compatible,
these codepoints are scattered over many Unicode blocks (mainly over  blocks in fact, of which
 blocks are devoted exclusively to math characters; in addition to these another  blocks each
contain a few characters for occasional use in mathematics).

 The original name of the Math Symbol and Math Extension “Principal” encodings was “Primary”, which was sub-
sequently changed to “Privilege”. As I think neither really conveys the intended meaning, I changed the name to
“Principal” here.

TUT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

90 NewMath and Unicode
Johannes Küster

Additional information about Unicodemath is given in the Unicode Technical Report # []
and in “MathClass.txt” [], a file which classifies the Unicode math characters according to their
usage and provides “a mapping to standard entity sets commonly used for SGML and MathML
documents”. The classification is comparable to TEX’s mathematical symbol classes, with the
additional classes “diacritic” (which is not handled as a class by TEX, but by \mathaccent)
and “fence” (an unpaired delimiter or a delimiter-like separator; normally treated as \mathrel
in TEX).

Glyph Variants in Unicode. Some mathematical symbols did not get a codepoint of their own,
instead they can be accessed as a combination of twoUnicode codes (examples are shown below).
This is the case for the negated version of many relators, for variants of negated relators (with a
vertical negation slash instead of a slanted one), and for some symbols which are consideredmere
stylistic or typographic variants of others.

∉ U+ ∈| U+, D    

� U+,  �| U+, D  -   

� U+ � U+, FE -    

Examples of Unicode variants and combinations: with U+D “vertical line over-
lay” and U+ “combining long solidus overlay” (with and without encoded
negated version), and with U+FE “Variant Selector ”

These variants are shown in three tables in [] (Table . there shows those relators with
encoded negated form for which a variant with vertical stroke overlay can be realized by compo-
sition of base character and overlay; Table . shows those relators for which the negated form
can only be realized by composition (i.e. the negated form is not encoded itself); and Table
. shows all the currently defined glyph variants, which can be realized as a combination with
“Variant Selector ” U+FE).

Future Additions to Unicode Math. Of course Unicode math can be and will be extended in
the future. The Unicode Pipeline Table [] shows some mathematical characters which will be
included in the forthcoming Unicode version .., due in March . Also newly discovered
and newly invented symbols will be standardized in future version eventually, when they are
used by a considerable number of people. These possible extension have to be taken into account
when designing new math font encodings for TEX.

Reasons for Newmath

To see more clearly how Unicode math could be made usable for TEX, and why Newmath could
still be very helpful, let’s see what Unicode does offer and what it does not.

Unicode offers a very large set of mathematical characters, with a standardized code refer-
ring to each character. But the backward-compatibility leads to a quite unordered way in which

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode
Johannes Küster

91

characters are presented within Unicode. This is no problem for a computer program (e.g. for
any automatic conversion program, workflow processes and the like), but it makes it difficult for
users to search for a specific character, or for font designers to get an overview over all those math
characters.

Unicode does not offer any sorting or ranking of mathematical symbols, nor much informa-
tion about the meaning or usage of most characters. Also Unicode encodes only base characters,
thus leaving all typographic variants aside which are needed in proper mathematical composi-
tion. Now theoretically all those glyphs could be defined in one large OpenType font, by assigning
glyphs in the Private Use Areas (PUA) of Unicode, and/or by defining those glyphs as alternate
forms of their base glyph via OpenType features. Unfortunately, it is not very likely that a stan-
dard way of PUA usage will evolve for math fonts. Also, the currently defined OpenType features
are hardly suitable or sufficient for math fonts.

So I see many reasons why Newmath is still interesting and could be useful, despite Unicode
and OpenType, and despite any successor of TeX which will be Unicode and OpenType capable:

– Newmath offers a standard interface for TEX (LATEX, ConTEXt).
Currently almost each set of math fonts comes with its own encodings, which makes font
switching very cumbersome.

– Newmath will offer all the typographical variants needed.
This comprises most of the characters in extension fonts: larger and extensible delimiters,
arrows and root symbols; text and display versions of big operators and integrals; wide
accents. (This could be done in an OpenType font as well, of course.)

– Newmath will order, sort and rank mathematical characters.
This will give a much better overview than it is possible in Unicode, making it compara-
tively easy to find a specific character, to judge its importance, etc.

– Newmath could serve as a guideline to font designers.
Within Unicode, it is very hard for a font designer to identify the characters needed for
mathematics, and to seperate indispensable math characters from less important ones. In
fact, most font designers will be abhorred by the prospect of designing  additional
characters, of which most will be only seldom used.

Here Newmath could offer a clearly arranged and well-ordered set. For example is the
math asterisk ∗ (U+E  ) easily overlooked, as most fonts already contain
an asterisk * (U+A ), but normally this glyph is not suitable for math, which
needs a larger version, six-pointed and vertically centered at the mathematical axis.

– Newmath could be used to classify math fonts.
Currently it is not easy to judge the usability of a specific math font, and to gain a quick
overview of its glyph complement set. This could be made much easier by classifying the
font according to the set of its supported Newmath encodings. For example, it should be
quite easy then to see that a font has all the Unicode glyphs for Mathematical Logic.

TUT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

92 NewMath and Unicode
Johannes Küster

Further Development of Newmath

For further development of Newmath, I see the following areas: Encodings; macros; fonts; pack-
ages and tools; integration and interaction with other packages; additions and enhancements to
TEX’s mathematical typesetting engine.

I am mainly concerned with encodings, macros and fonts here, and my ideas for these areas
are detailed in the sections below.

The development of “packages and tools” will, for a good part, go hand in hand with the
development of macros (for LATEX, ConTEXt and plain TEX). By “integration and interaction with
other packages” I mean that Newmath should work with other math packages (e.g amsmath or
nath in LATEX), but also that Newmath could borrow and integrate from other packages (e.g.
macros in widespread use could be standardized). For possible “additions and enhancements to
TEX’s mathematical typesetting engine”, see Ulrik Vieth’s article []. Here I’m only dealing with
these aspects in the way they influence possible encodings.

Of course I won’t and can’t do all the necessary work alone, so anyone who wishes to help and
to contribute is invited to join the project. Also all steps in the development will be discussed on
the Math Font Group’s “math-font-discuss” mailing list.

Development of the Encodings

General Considerations. We have to take TEX’s restrictions into account: only  families of math
fonts are allowed in one formula (practically, this means in one document in most cases). There-
fore the additional encodings should be designed in a way that minimizes the loading of addi-
tional fonts. In a  file, only  different non-zero heights and  non-zero depths are allowed.
While one could cope with this for symbol fonts in most cases, it is a really troublesome re-
striction when it comes to extension fonts. This leads to the strange vertical placement of most
glyphs in extension fonts, which hinders their usability outside TEX. But even within TEX, it
could become inpossible to cope with for some fonts which differ in design from some of Com-
puterModern’s assumptions. These restrictions should be overcome by any successor of TEX,
maybe best with a new “math font metrics” format, but for the time being, the encodings should
deal with them as good as possible.

But the encodings and macro packages should not be tight to closely to TEX and the current
situation; they have to be flexible enough to be extendable, to other typesetting traditions like
those of traditional Russian mathematical typography, and to font set which bring their own
extensions and special macros, like the MathTime Pro fonts.

The Existing Encodings. I considerMath Core as fairly stable. About  characters could be moved
to another encoding maybe. This would allow to include a few Roman characters like e, i, and
maybe D (MathCore already contains “d”, and these single Roman letters are quite common in
mathematical typography; inclusion in MathCore would allow kerning with Math Italic letters);
but this may sacrifice compatibility with the old math font setup.

BothMath Symbol Principal andMath Symbol One are stable as well, maybe with one or two
questionable characters in each one, and with about  yet unassigned codepoints in MS 1. The
additional Unicode symbols supply some obvious candidates for inclusion here.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode
Johannes Küster

93

For Math Symbol Two, I think that the Fraktur digits are a misunderstanding, these should
be replaced by old-style (tabular) digits (the “Fraktur digits” currently included here stem from
the Euler fonts, but apparently these are intended as Euler Roman old-style digits; while proper
Fraktur digits – clearly visually seperate from Roman digits – just do not exist). The Arrow Kit
could be moved to an encoding of its own, as many more arrow pieces could be added then.

The case is different for the extension fonts: maybe the whole encodings should be over-
thrown, maybe we should sacrifice compatibility with older documents here in favour of a clearer
layout. By putting e.g. root, accents, and over- and underbrace into one encoding, and putting
delimiters and big operators into a second one, most glyphs could be brought to their natural
position, which would greatly improve on the design and general usability of such fonts.

New Additional Encodings. For the remaining Unicode math characters (i.e. for the characters
not yet encoded in Newmath), we have to design new, additional encodings. First, let’s see how
many additional characters there are, and how many additional forms (like larger delimiters) we
need. The following table gives a rough number for the additional characters in each class, with
the number of additional codepoints needed in TEX:

Arrows: 250 + arrow kit pieces: 100
Binary Operators: 130
Geometric Symbols: 100
Miscellaneous Symbols: 30
Ordinary Symbols: 90
Punctuation: 15
Relators: 230 + negated variants: 100
Z Notation: 10
Accents and Overlays: 30 + in extension fonts: 90
Big Operators: 0 + in extension fonts: 40
Delimiters: 45 + in extension fonts: 450
Integrals: 25 + in extension fonts: 50

Total number of glyphs: 955 + in symbol fonts: 200
+ in extension fonts: 630

This would mean  or  additional symbol font encodings (possibly including  or  arrow kit
encodings), and  or  additional extension font encodings.

To minimize the loading of additional fonts, and to offer clearly arranged font layouts (both
to users and to font designers), we should sort and group the Unicode characters, according to
importance, meaning, and area of use (within mathematics). For example, all symbols specific to
one field of mathematics should be kept together in one encoding. Examples are logic, geometry,
or z-notation symbols.

Most documents will only need a limited set of mathematical symbols, and well-designed
encodings should make it possible to keep within TEX’s restriction to  math font families in
most cases – without the need for mid-document changes of math encodings.

Unfortunately Unicode does not providemuch information neither about the use of a specific
character nor about its field of use, so many characters need some research before one could
group them properly into an encoding.

TUT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

94 NewMath and Unicode
Johannes Küster

Macros and Packages

Along with the new encodings, we do need standard macro names to access those glyphs. Again,
any information about the meaning of a character is very helpful here, as then the macro could
be name accordingly. For some characters, this is a rather straightforward task.

Ideally, these macro names should be the same in all TEX based systems (especially in plain
TEX, LATEX and ConTEXt). Of course one has to develop a “Newmath” package (or file bundle)
for each system, but these macro definitions will form the core of each such package and will
essentially remain the same.

For LATEX, the current version of Newmath already supplies the necessary files, so these have
to be extended accordingly. When Newmath development ceased in , ConTEXt was not very
widespread yet, but now Newmath should of course support it (and vice versa).

TEX’s existing math macro names could be broadly categorized as

– descriptive (describing the shape, e.g. \uparrow)

– semantic (describing the meaning, e.g. \sum, \times)

– mixed (partly semantic, partly descriptive, e.g. \otimes).

Obviously Knuth employed the following scheme: any symbol with one fixed meaning gets a
macro name according to its semantics (thus, \sum and not \bigsigmaup or something). Any
symbol without fixed or with more-than-one meaning gets a macro name describing the shape.
And the mixed names come in for symbols where the base symbol or a component of the symbol
has a semantic name already (but where the meaning of the combined symbol is not clear or not
fixed). Of course the new additional macro names should follow this scheme, using a semantic
name whereever possible.

In addition, Newmath could be extended to gather macros in widespread use, which could be
standardized by including them in Newmath packages. Examples of such macros are \abs{...}
and \norm{...}. Supplying such a standardized set of (alternative) semantic macros could be
very helpful to many users. In fact, by using well-chosen semantic macros, a TEXsource some-
times can become more readable than its pretty-printed output, and of course it greatly helps in
conversion e.g. to ContentMathML or OpenMath.

LatinModernMath Fonts

Of course encodings, macro packages, and tools are only useful together with fonts. Freely avail-
able math fonts could be extended and reencoded, and commercial math fonts could be mapped
to the new encodings via virtual fonts (but normally they will lackmany of the additional glyphs).
A good part of this work (on ComputerModern extension and on virtual fonts for other math
fonts) has been done already in the last version of Newmath, of course based on the math fonts
available at that time. For the future development, I think it won’t be a very useful approach to
extend the Metafont sources of ComputerModern, as most users would want PostScript Type 
or OpenType fonts. Instead, I think of extending the LatinModern fonts.

The LatinModern math fonts will be a set of freely available math fonts, to be used with
LatinModern text fonts. These fonts will be developed by me (and with the help of anybody who

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT08

NewMath and Unicode
Johannes Küster

95

volunteers to work on these fonts). However I did not start to work on these fonts yet, so I can
only give an account of my ideas and intentions here.

I will do the development in MetaType, so the resulting fonts will be in Type  format and
could be wrapped as (CFF flavoured) OpenType, too. Eventually the MetaType sources will be
released as well, just as it is done (or planned) with LatinModern text fonts. In general, the design
will followComputerModernmath fonts, with  versions of each glyph: in  weights (regular and
boldface), times  optical sizes ( /  / pt, or rather “Tiny”, “Caption”, “Regular”, as the fonts will
be freely scalable of course). But the number of glyphs will be considerably extended, to comprise
the complete set of Unicode math characters alongside all characters defined in Newmath.

Neither the design nor the metrics of the fonts will be completely compatible with Com-
puterModern: the design should be more “of a piece” than with ComputerModern and its vari-
ous extensions (just one example of such a mis-match: the  Hebrew letters Beth, Gimel, Daleth
from the AMS fonts do not match the design of CM’s Aleph, they rather match the Euler fonts’
Aleph); and metrics will be changed as needed (e.g. many new kerning pairs will be possibly due
to the extended encodings).

By default, these fonts will be encoded in the Newmath standard, thus offering a freely avail-
able implementation of the standard. But by the MetaType approach the fonts will be inde-
pendent of any de-facto encoding – thus one could rather easy adapt them to further Newmath
development, to different encodings, or even to the requirements of other typesetting applica-
tions.

References

[] Math font group project homepage. http://www.tug.org/twg/mfg/

[] Barbara Beeton, Asmus Freytag, and Murray Sargent III. Unicode technical report #: Uni-
code support for mathematics. http://www.unicode.org/reports/tr25/

[] MathClass-.txt – Classification of math characters by usage.
http://www.unicode.org/reports/tr25/MathClass-6.txt

[] Unicode proposed new characters: The pipeline table.
http://www.unicode.org/alloc/Pipeline.html

[] Ulrik Vieth. Math typesetting in TEX: The good, the bad, the ugly. In: EuroTEX  (pro-
ceedings of the th European TEX conference, Kerkrade, the Netherlands), pages –,
.

TUT08 Preprints EuroTEX2005 – Pont-à-Mousson, France

96 NewMath and Unicode
Johannes Küster

Latin Modern fonts: how less means more

Bogusław Jackowski and Janusz M. Nowacki

Well, less is more . . .

Robert Browning, “Andrea del Sarto,” 1855.

1 Introduction

The Latin Modern project was launched during the
13th European and 10th Polish TEX Conference,
May 2002, Bachotek, Poland. The aim was to pre-
pare a family of outline fonts, compatible with Com-
puter Modern fonts ([8]), but, unlike CMs, equipped
with a rich collection of diacritical characters.
At that time, two solutions to the problem ex-

isted: (1) Lars Engebretsen’s AE (Almost EC, [3])
family of virtual fonts, based on Computer Mod-
ern fonts in PostScript Type 1 format released
by AMS; (2) Vladimir Volovich’s collection of Post-
Script Type 1 fonts, CM-Super ([15]). Engebretsen’s
approach has an important drawback—virtual fonts
can be used only with TEX. From this point of
view, Volovich’s CM-Super fonts would be a better
choice. The fonts were produced by Péter Szabó’s
TEXtrace ([12]) which, in turn, is based on Martin
Weber’s Autotrace ([16]). Volovich’s achievement is
really impressive, nevertheless we would cast doubt
upon the quality of the outlines of glyphs. This is
perhaps the intrinsic drawback of the autotracing
approach. Moreover, there is a problem with the
size of the CM-Super package. It contains more than
four hundred fonts; the size of the PFB files is almost
60 MB. Finally, it is not easy to to repeat the pro-
cess of the font generation if changes are needed,
as manual tuning was involved. (A comprehensive
discussion of alternative approaches can be found in
[5], [6], and particularly [11].)
Finding the situation unsatisfactory, some rep-

resentatives of European TEX Users groups decided
to prepare yet another family of fonts, Latin Mod-
ern, being in a way a continuation of Engebretsen’s
approach, but going further: the aim was to com-
prise all existing Latin-based alphabets, not nec-
essarily European. We were invited to lead the
project, which we gladly accepted.

2 The initial stage of the LM project

Like Engebretsen, we decided to make use of the
Computer Modern fonts in the PostScript Type 1
format, released by AMS. But being bent on working
with human readable sources, we decided to employ
our (anyway favourite) METAPOST-based program,
METAType1 ([6], [7]). One of the modules of the
METAType1 package is a converter from PostScript

fonts to METAPOST sources. So, the first step was
the conversion of PostScript Type 1 fonts to META-
POST sources that were to be manually adjusted.
The decision was not obvious at all. The main

disadvantage of such an approach is the “freezing” of
parameterization. As an alternative, we considered
a conversion of METAFONT CM sources into META-
Type1-conforming ones. It turned out, however,
that this method, although practicable, would be
time-consuming. Taking into account that our main
goal was the extension of the standard TEX fonts
with diacritical characters, we abandoned eventu-
ally the idea of working with METAFONT sources,
although access to the CM parameterization is pro-
vided (see section 4.1).

3 Interim stages of the LM project

The LM family of fonts has been developing evolu-
tionary. Our main concern, as already mentioned,
was the enhancement of the character set, but, as
a result of pressure from users, the number of fonts
also increased.

3.1 Serious matters and trifles

The number of glyphs per font grew from less than
two hundred to more than six hundred. Also, the
number of fonts grew. We started with 50 fonts
(following Engebretsen); currently, the LM family
contains 57 fonts. Among them are fonts that do
not belong to the “Knuthian canon,” for example,
the bold companion for cmssq8 and cmssqi8 (pre-
pared by Pierre A. MacKay)—see [5], p. 67, for the
complete list of LM fonts. The increase of the num-
ber of glyphs resulted of course in the rapid growth
of the number of kern pairs.
The augmentation of the LM family of fonts was

certainly the most important part of the whole en-
terprise. We wrote several tools (mostly awk scripts)
that helped to control the herd of glyphs and in-
terdependences between them— it is unimaginably
difficult to fiddle with dozens of thousands of glyphs
and hundreds of thousands of kern pairs by hand.
As we pointed out in [5], the lion share of our

time was spent on the struggle against tiny details
and exceptions. We were not expected to come up
with brand-new concepts. On the contrary, we had
to comply with the established practice. This, as it
turned out, necessitated looking closely into lots of
various aspects.
One can call most of these problems trifles, but

their amount, relating of course to the size of the
project, created a real problem. Such “trifles” had
to be carefully analysed and even if the result of
the analysis was simply “let’s do nothing,” it took

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT09

Latin Modern fonts: how less means more
Bogusław Jackowski, Janusz M. Nowacki

97

Figure 1: A seemingly innocuous asymmetry
of double quotes turned out to be fairly bothersome;
PostScript names of the glyphs have been used
for the description.

time. Listing all details would be impracticable, but
we cannot resist to mention just a few in order to
demonstrate how seemingly less important things
may cause more trouble.

3.2 Detail 1: asymmetry of double quotes

One of such problems turned out to be, somewhat
unexpectedly, the asymmetry of double quotes (see
figure 1). Observe that single quotes are positioned
symmetrically, while double ones are not. This is
the CM fonts heritage: the glyphs quoteleft (reverse
apostrophe), quoteright (apostrophe), quotedblleft
(opening quotes), and quotedblright (closing quotes)
were designed by Donald E. Knuth ([8], p. 140 – 141
and p. 280 – 281), who decided to introduce asymme-
try. But the glyph looking like an English opening
quote is used in some languages, for example, Czech
and German, as a closing one. Therefore, Czech
TEX users introduced a special glyph with differ-
ently asymmetric sidebearings (quotedblright.cs in
figure 1) in their variant of CM fonts. In conse-
quence, the character quotedblbase (used as an open-
ing quote, for example, in Czech, German, and Pol-
ish) also inherited the asymmetry1.

1 For historical reasons, the glyphs quotedblbase and

quotedblbase.cs slightly differ; the latter is placed asymmet-

rically also in typewriter fonts.

The proliferation of glyphs caused by the asym-
metry of quotedblleft and quotedblright is of course
a disadvantage because fonts needlessly swell. We
decided, however, to inflate them even more: sym-
metric quotes were provided as an alternative. We
believe that only the latter ones should be used, but
because of the remnants of history, the problem can-
not be resolved once forever—asymmetric quotes
should be retained.

3.3 Detail 2: non-uniform width of accents

Typically, accents should have the same width. This
is, however, not the case with CM fonts: cedilla,
dotaccent and ring have widths different from the
remaining accents, that is, acute, breve, caron,
circumflex, dieresis (umlaut), grave, Hungarian um-
laut, macron, and tilde, all of which have the same
width of 1/2 em. We cannot say why cedilla and
dotaccent are an exception. The idea behind the
extraordinary width of ring can be easily under-
stood if one inspects the code of the plain TEX ([9])
macro \AA which typesets the symbol Å (Aring).
The glyph ring is designed to align with the top of
the letter A:

\def\AA{\leavevmode\setbox0\hbox{!}%
\dimen@\ht0\advance\dimen@-1ex%
\rlap{\raise.67\dimen@\hbox{\char’27}}A}

It is tempting to have a unique width for all ac-
cents. But this would mean upward incompatibility,
as the \AA macro would cease to work. On the other
hand, it is not urgently needed, as Aring obviously
belongs to the repertoire of LM glyphs. Perhaps the
cure would be to introduce alternative accents and
use the odd-sized ones only with TEX, and only when
compatibility is needed, for example, if the LM fonts
are to be used as a replacement for CMs (see section
4.2). But, as we complained already in section 3.2,
a supererogatory increase of the number of glyphs
would be an obvious disadvantage.
The plain TEX macro \AA is not the only one

that heavily exploits the metric properties of CMs.
The macros \l and \L (which define glyphs lslash
and Lslash, respectively) also are defined in a CM-
dependent manner. Both macros rely on the as-
sumption that there is a special glyph in slot 32
(suppress; of course, the width of this “accent” glyph
is different from a typical one) and that there are
specific, unusually large kerns between this glyph
and the letters l and L:

\def\l{\char32l}
\def\L{\leavevmode\setbox0\hbox{L}%
\hbox to\wd0{\hss\char32L}}

TUT09 Preprints EuroTEX2005 – Pont-à-Mousson, France

98 Latin Modern fonts: how less means more
Bogusław Jackowski, Janusz M. Nowacki

Figure 2: The lowercase letters in CM caps and
small caps fonts, that is, cmcsc10 (top) and cmtcsc10
(bottom), are higher than the nominal x-height ; this
may befool some typesetting programs which may
assume that lowercase letters should be accented
without an additional vertical shift of the accent—
the potential disastrous results are shown to the right;
TEX rises an accent by the difference between
the ex unit and the actual height of an accentee.

For example, the respective kern amounts in cmr10
are −2.78 pt and −3.19 pt, while other kerns are
generally in the order of a fraction of a point.
There are two intrinsic problems with suppress:

(1) it does appear in worldwide standards, such as
Unicode ([14]) or Adobe Glyph List ([2]), although
lslash and Lslash appear there (the Unicode stan-
dard uses the name stroke instead of slash); (2) ac-
cording to ASCII, slot 32 should be occupied by the
space glyph. The result is easy to predict: most non-
TEX fonts will not work properly with plain TEX and
most non-TEX software will not work properly with
standard TEX fonts. . .

3.4 Detail 3: bogus x-height in small caps

One might expect that x-height (that is, the ex unit
in TEX) is approximately the height of the lowercase
letter x. True, but it depends on the accuracy of ap-
proximation. The difference between the x-height
and the height of the lowercase x is queerly large
in CM caps and small caps (see figure 2). For ex-
ample, in cmcsc10 it reaches 0.83 pt. The answer
to this riddle is simple: all roman fonts of the CM
family have exactly the same value of x-height ; in
other words, cmcsc10’s x-height is the height of the
cmr10’s lowercase x. This discrepancy is harmless,
if not advantageous, for TEX, but if the fonts are to
be used outside the TEX world, then one may expect
weird results if a given system is capable of making
composed characters. Nevertheless, we adopted the
CM convention for the LM fonts in the hope that if a
font is used in a different environment, all necessary

characters that could potentially be composed will
be already in it.

4 The present stage of the LM project

The project seems to be approaching a development
plateau: in comparison with the state of the art re-
ported in [5], the number of fonts was not changed,
although the repertoire of characters has been aug-
mented by approximately one hundred glyphs per
font—now each font contains circa 650 glyphs. In
particular, diacritical characters for Vietnamese and
Navajo alphabets have been added—many thanks
to Hàn Th´̂e Thành, Karl Berry and Hans Hagen for
their warm-hearted help.
As was mentioned, the LM family of fonts devel-

oped evolutionary. Everybody knows that evolution
is capable to bring forth really bizzare creatures. So
were the METAType1 sources of the LM fonts after
two years of evolution. Two years more—and we
would be lost in them. Hence the decision to re-
peat the initial step: the METAType1 sources were
once more generated from the now current LM fonts
in PostScript Type 1 format. Of course, manual
tuning was again necessary, as the structure of au-
tomatically generated sources is not always fit for
a particular purpose. The newly generated sources
turned out to be satisfactorily legible, so we decided
to release them publicly. Thus, one of the project’s
main goals was reached.

4.1 Structure of the LM sources—an

overview

The LM family of fonts consists of a few general pur-
pose files and files containing specific data for every
font (see the listing of a sample driver file below).
The data for each font is split into five files that
contain:

metric data,

PostScript-oriented data,

encoding data,

the definition of shapes of basic glyphs,

the information about ligatures and kerns.

All these files are governed by a single driver
that inputs them—see lines 5, 6, 7, 10, and 13 in
the listing below:

1 % A driver file for lmb10 Latin Modern font
2 input fontbase;
3 vardef cm_pal = "cmb10" enddef;
4 input comm_mac; % common defs, CM params
5 input lmb10.mpm; % metric
6 input lmb10.mph; % PS-oriented header
7 input lmb10.mpe; % encoding
8 input comm_mph; % common header
9 beginfont

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT09

Latin Modern fonts: how less means more
Bogusław Jackowski, Janusz M. Nowacki

99

10 input lmb10.mpg; % ‘‘frozen’’ glyphs
11 input comm_mpg; % common glyphs (diacritics)
12 if known generating:
13 input lmb10.mpl; % ligatures and kerns
14 fi
15 endfont

There is no parameterization in these files. All en-
tities are defined using bare numbers. The files are
assumed to be “frozen” and are not expected to be
altered in the future, unless new basic characters
are added or severe bugs are spotted. The excep-
tion is, of course, the encoding file (line 7) that can
be modified as need be.
Each LM font is associated with its CM pal

(line 3). The respective CM driver file is being read
and its parameters are stored for further use; they
are exploited, for example, in the file comm_mpg.mp
(line 11) by the programs defining the characters
depicted in figure 3.
The comm_mpg.mp file is actually a “pivot” of

the LM fonts. Its main purpose is to define accented
glyphs, that is, diacritical characters that can be
defined as composites. But not only. The file begins
with three peculiar inputs:

input gly_euro.mp;
input gly_guil.mp;
input gly_vspa.mp;

The files being input are exceptional as they do not
define accented characters. They contain a paramet-
ric METAFONT-based code for the following glyphs:
euro (gly_euro.mp), guillemotleft, guillemotright,
guilsinglleft, guilsinglright (gly_guil.mp), and visi-
ble space (gly_vspa.mp). The selection of glyphs is
more or less arbitrary. The glyphs could be “frozen”
as well; however, we decided to leave them in order
to demonstrate what the METAFONT code would
look like after a manual conversion to the META-
Type1 jargon.
Next, the definitions of letters i and j come. If

one is surprised, one shouldn’t. After all, the letters
i and j are simply dotlessi and dotlessj accented
with dotaccent.
Then, the main part of the comm_mpg.mp file

ensues. It reads as follows:

%% \vb\- Aacute:\- \PICT{Aacute}\-
acc_glyph(_A)(_Acute)(_Aacute);

%% \vb\- aacute:\- \PICT{aacute}\-
acc_glyph(_a)(_acute)(_aacute);

%% \vb\- Abreve:\- \PICT{Abreve}\-
acc_glyph(_A)(_Breve)(_Abreve);

%% \vb\- abreve:\- \PICT{abreve}\-
acc_glyph(_a)(_breve)(_abreve);

Figure 3: A group of diacritical characters
in the LM fonts for which accents were positioned
by hand. Note that although the suffix caron
misleadingly appears in the glyph names, it is not
an element of the respective glyphs.

%% \vb\- Abreveacute:\- \PICT{Abreveacute}\-
acc_glyph(_A)(_breveacute)(_Abreveacute);

...

The details of the code are unimportant—
the reader is expected to understand what is go-
ing on here without arcane knowledge of the META-
FONT language. We only mention that the per-
sistently appearing macro acc_glyph automatically
generates an accented character and that lines be-
ginning with a double percent are meant for the
preparing of proofs of a font.
The code looks a bit boring. Indeed, the ma-

jority of diacritical characters are composed using
the macro acc_glyph which roughly corresponds to
the TEX \accent primitive. In particular, the Viet-
namese diacritics are defined in this way (see [4] for
the details concerning the Vietnamese alphabet).
Note that there are different accents for up-

percase and lowercase letters, for example, Acute
and acute. Note also that double accents in the
LM fonts, such as breveacute, are not defined using
the macro acc_glyph, that is, they are supposed
to belong to the basic set of glyphs. They might
have been defined as composed objects, but this
would increase the complexity of the fonts (for exam-
ple, abreveacute would depend on a and breveacute
and the latter, in turn, would depend on breve and
acute), which we wanted to avoid. Moreover, in
some cases subtle adjustments were needed. There-
fore, we decided to “freeze” the double accents, once
they had been created.
There are, however, several glyphs that can-

not be obtained in a simple manner (see figure 3).

TUT09 Preprints EuroTEX2005 – Pont-à-Mousson, France

100 Latin Modern fonts: how less means more
Bogusław Jackowski, Janusz M. Nowacki

In the LM fonts, the following glyphs are specially
programmed: dcaron, gcommaaccent, Lcaron, lcaron,
tcaron, and ydotbelow. A punctilious reader may
wish to examine the source code for the details of
the implementation.

The final part of comm_mpg.mp defines dupli-
cated glyphs, that is, glyphs of the same shape, but
different names. For example, we decided to keep
the glyphs named Tcedilla and tcedilla for historical
reasons, although their proper names are Tcomma-
accent and tcommaaccent (see [5], p. 70 – 71). Such
duplication increases of course the size of a font,
but not excessively. As already mentioned in [5]
(p. 71), the duplication of a character adds only
30 – 40 bytes to a font. This is done by a META-
Type1 module which compresses PostScript Type 1
fonts. The module defines multiple occurrences of
the same PostScript code as subroutines. In partic-
ular, whole characters can be defined as subroutines.
This means that only the code that invokes these
subroutines is to be added. Thus, the duplication of
glyphs is moderately harmful which does not mean
that it is always reasonable. In future, some of the
duplicated glyphs might be deleted.

4.2 Using LM fonts with other tfm files

Obviously, as shown in [5], full LM and CM font
compatibility can not be expected, that is, LM met-
ric files cannot be used instead of CM ones. Still,
it is possible to use LM fonts as a replacement for
a subset of CMs: one should use CM metric files, a
few special encoding files and a special font map file
for the dvips driver. A typical line (broken here
into two lines for technical reasons) from the rele-
vant font map file for CM fonts looks as follows:

cmb10 LMRomanDemi10-Regular
"enccmrm ReEncodeFont" <cmrm.enc <lmb10.pfb

This line says that TEX should use the metric file
cmb10.tfm for typesetting, while the dvips driver
should embed files lmb10.pfb and cmrm.enc instead
of respective files for the CM fonts. Because the
dimensions of the glyphs occuring both in the LM
and CM fonts are the same (within the accuracy of
rounding errors) and glyph shapes are very similar
to each other, a user should not notice any differ-
ence, unless there is a bug in the LM fonts.

We hope that this solution will prove sufficient
in most of practical cases. Similar files are provided
for the PL and CS fonts, that is, for the Polish and
Czech variants of the CM fonts. At present, work
is being done on the support for VNS, that is, the
Vietnamese variant of the CM fonts.

4.3 LM fonts in the OpenType format

The PostScript Type 1 format is claimed to be ob-
solete since many years. Actually, all PostScript
engines support Type 1 fonts and are expected to
support them also in the future. Recently, however,
theOpenType format becomes a worldwide-accepted
standard (see, for example, [10]). We believe that
the TEX world should acquiesce to this. Therefore,
we also prepared the collection of the LM fonts in
the OpenType format.
The current release of the OpenType LM fonts

should be considered experimental, although we
gathered some experience during the preparation of
the OpenType fonts for the Antykwa Toruńska fam-
ily. We employed the Adobe Font Development Kit
for OpenType (free but not open; see [1]) for the
conversion from the PostScript Type 1 to OpenType
format. An alternative could be FontForge, a mar-
vellous openware font program by George Williams
(see [17]). Currently, AFDKO better suits our pur-
pose, but as FontForge is being constantly developed
we hope to switch to it before long.
One of the most important innovations intro-

duced in the OpenType format are so called fea-
tures. These are tags that provide additional in-
formation about how to use the glyphs in a font. So
far, five features have been built into the OpenType
LM fonts:

cpsp (Capital Spacing).

dlig (Discretionary Ligatures),

frac (Fractions),

liga (Standard Ligatures),

onum (Old Style Numerals).

The availability of these features depends upon
application support, for example, the Adobe InDe-
sign program under the control of the Microsoft
Windows 98 operating system offers all of them (see
figure 4), while Microsoft Word 2002 in the same
system ignores OpenType features.
Perhaps the toughest problem is the grouping

of LM fonts into subfamilies. The idea of a series of
point sizes, as implemented by Knuth in the CM
fonts, seems to be athwart the nowadays praxis.
Nevertheless, we followed the Knuthian tradition—
see figure 4. Feel warned, however, that the adopted
grouping may likely change after consultations with
experienced OpenType users.

5 Conclusions

As one can infer from the title of the paper, our aim
was to obtain a product handy in use at the price
of abandoning features that—as far as we perceive
it—are only moderately usable.

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT09

Latin Modern fonts: how less means more
Bogusław Jackowski, Janusz M. Nowacki

101

Figure 4: The OpenType LM family of fonts as seen by the Adobe InDesign program. Note that Adobe Type
Manager used to accept subfamilies that contained at most four variants of a font, that is, normal, italic, bold,
and bold italic. This is no longer the case with OpenType fonts— see the list displayed in the right part of the
screen shot.

Just two examples:

There are some fonts in the CM family that we
never happened to use: cmff10 and cmfi10. We
decided not to include such fonts into the LM
family.

We did not follow the idea underlaying the EC
fonts to provide a complete series of font sizes
(our arguments are set forth in [5], p. 66), unlike
Volovich with his CM-Super fonts.

It is for the users to judge whether the goal was
achieved.

Actually, the LM family of fonts in many re-
spects offers simultaneously less and more, not al-
ways unequivocally, for example:

The number of fonts is less than in the CM fam-
ily, but the repertoire of characters in each font
is much larger.

The LM parameterization is limited in compar-
ison with the CM one, but we expect the poten-
tial modifications and augmentations of LMs to
be easier, although the LM sources are much
larger (6 MB after a compression) than the CM
ones. Note that LM fonts take up much less
space than the CM-Super ones (but reckoning

with the uncompressed LM sources, the sizes
become comparable).

If the LM family would become a basic set
of fonts for TEX (which we hope for), then
the national variants of the CM fonts (PL, CS,
VNS) could be dismissed, which would intro-
duce more order into the TEX font distribution.

The area of possible applications for the LM
fonts is broader in comparison with the TEX
fonts available so far, because of the furnish-
ing of the LM distribution with the OpenType
format.

Although the LM glyph repertoire is already
fairly rich, it can and should be extended fur-
ther: the next step will be perhaps the addition
of glyphs specific for African Latin-based alpha-
bets (cf. [13]). It is not within the scope of the
project, however, to include Cyrillic and Greek
alphabets.

There is, however, at least one case where more
means a not wanted more: the significantly large
repertoire of glyphs per font means that the one-
to-one correspondence between an LM font and its
metric no longer exists and that a multitude of font
metric files can be generated for a given font. This

TUT09 Preprints EuroTEX2005 – Pont-à-Mousson, France

102 Latin Modern fonts: how less means more
Bogusław Jackowski, Janusz M. Nowacki

abundance is not necessarily what we want. But as
long as TEX accepts 1-byte fonts only, the situation
cannot be improved. This, however, is quite a dif-
ferent story.
The LM project is not finished yet. As all of

us were taught by Donald E. Knuth, the debugging
of software is a never-ending task and therefore soft-
ware projects never end. But apart from fixing bugs,
when the LM project reaches the stage of stability
of metric data, we will consider the project essen-
tially finished. Having legible sources, we are fairly
optimistic—as far as we can assess, the LM project
is rather more than less accomplished.
The current version, 0.98, of the LM fonts dis-

tribution is available either from CTAN or from
ftp://bop.eps.gda.pl/pub/lm.

6 Acknowledgements

The Latin Modern project is supported by European
TEX Users Groups, in particular by the German-
speaking TEX Users Group DANTE e.V., the French-
speaking TEX Users Group GUTenberg, the Pol-
ish TEX Users Group GUST, the Dutch-speaking
TEX Users Group NTG, and, last but not least,
by TUG—very many thanks. We would like to
express our gratitude also to Harald Harders for
preparing and maintaining the web page “Wishes for
Latin Modern” (http://www.harald-harders.de/
latex/lmodern.html) and to Jurek Ludwichowski
for his willingly offered help, not only during the
preparation of this paper.

References

[1] Adobe Font Development Kit for OpenType,
http://partners.adobe.com/public/

developer/opentype/afdko/topic.html

[2] Adobe Glyph List, ver. 2.0, September 20,
2002, http://partners.adobe.com/public/
developer/en/opentype/glyphlist.txt

and Adobe Glyph List For New Fonts, ver. 1.1,
April 17, 2003, http://partners.adobe.
com/public/developer/en/opentype/

aglfn13.txt

[3] Lars Engebretsen, AE fonts,
http://ctan.org/tex-archive/fonts/ae/

[4] Hàn Th´̂e Thành, Making Type 1 fonts for
Vietnamese, TUGboat 24(1), Proc. of the 24th

Annual Meeting and Conference of the TEX
Users Group, p. 69 – 84

[5] Bogusław Jackowski, Janusz M. Nowacki,
Enhancing Computer Modern with accents,

accents, accents, TUGboat 24(1), Proc. of the
24th Annual Meeting and Conference of the
TEX Users Group, p. 64 – 74

[6] Bogusław Jackowski, Janusz M. Nowacki,
Programming PostScript Type 1 Fonts Using

METAType1: Auditing, Enhancing, Creating,
Proc. of 14th EuroTEX, June 24

th – 27th 2003,
Brest, France, p. 151 – 157

[7] Bogusław Jackowski, Janusz M. Nowacki,
Piotr Strzelczyk, METAType1:

A METAPOST-based Engine for Generating

Type 1 Fonts, Proc. of EuroTEX 2001,
27th – 27th September, 2001, Kerkrade,
the Netherlands, p. 111 – 119; the current
version of METAType1 is available from
ftp://bop.eps.gda.pl/pub/metatype1;
METAType1 for Linux prepared by
Wlodek Bzyl can be downloaded from
ftp://ftp.ctan.org/tex-archive/

systems/unix/mtype13/

[8] Donald E. Knuth, Computer Modern
Typefaces, Computers & Typesetting / E,
Addison Wesley, 1986

[9] Donald E. Knuth, plain.tex, http://
www-cs-faculty.stanford.edu/~knuth/

plain.tex.gz

[10] OpenType specification version 1.4,
http://www.microsoft.com/typography/

otspec/

[11] Karel Ṕı̌ska, Creating Type 1 fonts from
METAFONT sources: Comparison of tools,

techniques and results, Preprints for the
25th Annual TUG Meeting, August 30th –
September 3rd 2004, Xanthi, Greece, p. 54 – 64

[12] Péter Szabó, TEXtrace,
http://www.inf.bme.hu/~pts/textrace/

[13] Conrad Taylor, Typesetting African languages,
http://www.ideography.co.uk/library/

afrolingua.html

[14] The Unicode Standard 4.0. Final Unicode
4.0 names list, http://www.unicode.org/
Public/UNIDATA/NamesList.txt

[15] Vladimir Volovich, CM-Super Font Package,
ftp://ftp.vsu.ru/pub/tex/font-packs/

cm-super/

[16] Martin Weber, Autotrace,
http://autotrace.sourceforge.net/

[17] George Williams, FontForge—An outline font
editor, http://fontforge.sourceforge.net/

� Bogusław Jackowski
BOP s.c., Gdańsk, Poland
_JB ackowski@gust ·org ·pl

� Janusz M. Nowacki
Foto-Alfa, Grudziądz, Poland

·NJ owacki@gust ·org ·pl

Preprints EuroTEX2005 – Pont-à-Mousson, France TUT09

Latin Modern fonts: how less means more
Bogusław Jackowski, Janusz M. Nowacki

103

TUT10 Preprints EuroTEX2005 – Pont-à-Mousson, France

No abstract available

104 Panel discussion with Hermann Zapf and Donald Knuth: ’With a little help from the wizards’
Hermann Zapf, Donald Knuth

ProTEXt, a new TEX-Collection for Beginners

Thomas Feuerstack

February 27, 2005

Abstract

One of TEX’s largest strengths is embedded in the high modularity of the program. Beside
the processor itself, every TEXnican might use the Editor, Post-Processor-Program, etc. he prefers
most. For beginners or only interested person this advantage can lead to difficulties, especially in
times, where users have gotten accustomed at "complete environments".

ProTEXt shows a way, how even Beginners can easily setup a complete running system and
therefore it eliminates one of the main obstacles in using TEX.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET01

ProTEXt, a new TEX-Collection for Beginners
Thomas Feuerstack

105

Bibliography Styles Easier with MlBibTEX

Jean-Michel HUFFLEN
LIFC (FRE CNRS 2661)
University of Franche-Comté
16, route de Gray
25030 BESANÇON CEDEX
FRANCE
hufflen@lifc.univ-fcomte.fr
http://lifc.univ-fcomte.fr/~hufflen

Abstract

We emphasise and discuss some methodology about writing bibliography styles
using the nbst language, part of MlBibTEX. Most of the given tricks can also be
applied to developing styles using xslt, since nbst extends it closely. Last we
show that the organisation of a bibliography style in several files allows modular
decomposition.
Keywords: bibliographies, methodology, bibliography styles, multilingual fea-
tures, BibTEX, MlBibTEX, bst, nbst, xml, xslt.

Résumé

Nous dégageons et argumentons quelques méthodes d’écriture de styles bibliogra-
phiques au moyen du langage nbst de MlBibTEX. La plupart des conseils donnés
peuvent également s’appliquer au développement de styles en xslt, le langage
nbst en étant assez proche. Enfin, nous montrons en quoi l’organisation des di-
vers fichiers d’un style bibliographique permet une décomposition modulaire.
Mots-clés : bibliographies, méthodologie, styles bibliographiques, multilin-
guisme, BibTEX, MlBibTEX, bst, nbst, xml, xslt.

Zusammenfassung

Es werden einige Methoden dargelegt und untergesucht, um bibliographische Sty-
les in der Sprache nbst zu schreiben. Da nbst mit xslt nah verwandt ist, kann
diese Anleitung auch für die Programmierung der Styles in xslt helfen. Am Ende
wird an der Aufteilung der bibliographischen Styles in einzelne Dateien gezeigt,
dass eine modulare Dekomposition möglich ist.
Stichwörter: Bibliographien, Methodik, bibliographischen Styles, mehrsprachi-
gen Funktionen, BibTEX, MlBibTEX, bst, nbst, xml, xslt.

Introduction

This article aims to give some methodology about
the development of bibliography styles, that is, spec-
ifications that rule the layout of references put in
the ‘Bibliography’ section of a document, these ref-
erences being built from entries located in bibliog-
raphy data bases.

When we started the development of our pro-
gram MlBibTEX (for ‘MultiLingual BibTEX’) [9], we
were interested in going thoroughly into multilingual
aspects for a bibliography processor belonging to the
programs of TEX’s family and especially, generat-

ing bibliographies as source files for the LATEX word
processor [22], like BibTEX [26]. More precisely, we
aimed to put into action an ‘extended’ BibTEX with
multilingual features comparable with LATEX’s. An-
other example of such an extension is given by the
babelbib package and the bibliography styles in in-
terface with it [7].

As we explained in [12], we think that such
organisation —adopted for MlBibTEX’s first version
[9]— leads to complicated bibliography styles, since
the language bst [25], used within BibTEX, is not
modular: each style is a monolithic program put in

WET02 Preprints EuroTEX2005 – Pont-à-Mousson, France

106 Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

@INPROCEEDINGS{thys1997,
AUTHOR = {first => Frank,

last => Thys},
TITLE = {Auf der {Spur} des

{Vernichters}},
BOOKTITLE = {Dinoland},
EDITOR = {first => Wolfgang,

last => Holbein},
PAGES = {353--437},
PUBLISHER = {Bastei L\"{u}bbe},
ADDRESS = {Bergisch Gladbach},
YEAR = 1997,
MONTH = aug,
LANGUAGE = german}

Figure 1: Entry using MlBibTEX’s syntax.

only a single file, so if we would like to add multi-
lingual features, we have to extend each style sepa-
rately. This point and others decided us to develop a
new language, so-called nbst, for ‘new bibliography
styles’, close to xslt1, the language of transforma-
tions for xml2 documents. We think that such a
choice is good, since xml becomes a central formal-
ism for document interchange. In particular, using
nbst eases the production of bibliographies for xml
documents: for instance, documents written using
xsl-fo3 [37], a language for describing high-quality
print outputs, or DocBook [38], a system for writing
structured documents.

We explain in [17] why MlBibTEX does not use
xslt itself, after converting bibliography (.bib) files
into an xml-like format, as programs like BibteXML
[6] or bib2xml [27] do. However, if we agree to con-
sider an xslt-like language for bibliography styles,
we have to rewrite most of the bibliography styles
of BibTEX, if we want to provide some continuity
with this program. There exists a way to import bst
functions into an nbst program [11], nevertheless it
is obvious that complete rewriting is prefereable, in
order to take as much advantage as possible of this
programming paradigm. We put some methodology
into action to rewrite BibTEX’s bibliography styles,
we are giving these methods hereafter.

We begin with a small example, in order to il-
lustrate the expressive power of nbst. Second we
show how to design the layout of a reference. We
consider a particular case: the @INPROCEEDINGS en-
try type of BibTEX— for an article in a conference
proceedings or a story in an anthology—but our

1eXtensible Stylesheet Language Transformations.
2eXtensible Markup Language.
3eXtensible Stylesheet Language—Formatting Objects.

<inproceedings id="thys1997" language="german">
<author>

<name>
<personname>

<first>Frank</first><last>Thys</last>
</personname>

</name>
</author>
<title>

Auf der <asitis>Spur</asitis> des
<asitis>Vernichters</asitis>

</title>
<booktitle>Dinoland</booktitle>
<editor>

<name>
<personname>

<first>Wolfgang</first>
<last>Holbein</last>

</personname>
</name>

</editor>
<publisher>Bastei Lübbe</publisher>
<year>1997</year>
<month><aug/></month>
<address>Bergisch Gladbach</address>
<pages>

<firstpage>353</firstpage>
<lastpage>457</lastpage>

</pages>
</inproceedings>

Figure 2: The entry of Figure 1 as an xml tree.

method is easily adaptable to any entry type. Then
we implement our specification. Last, we show how
to organise the different items of a bibliography and
give some advice about the decomposition of an nbst
program into several files. A succint comparison be-
tween bst and nbst statements is given as an annexe,
followed by some complements about writing exter-
nal functions using Scheme —the language used for
developing MlBibTEX [15]—close to the expression
language used as part of dsssl4 [18], the language
of stylesheets of sgml5 [8].

What knowledge is required to read this arti-
cle? A basic one about xml, XPath—the language
used to address parts of an xml document— and
xslt is sufficient to just understand the examples
given hereafter. Good introductions to them are
[29, 30, 34], the ‘official’ references about XPath and
xslt, issued by the w3c6, are [36, 35]. Concerning

4Document Style Semantics and Specification Language.
5Standard Generalized Markup Language, the ancestor

of xml. Now it has just historical interest.
6World Wide Web Consortium.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

107

<!ELEMENT pages (onepage+ |
(firstpage,(ff | lastpage)) |
pages-verbatim)>

<!ELEMENT onepage %INTEGER;>
<!ELEMENT firstpage %INTEGER;>
<!ELEMENT lastpage %INTEGER;>
<!ELEMENT ff EMPTY>
<!ELEMENT pages-verbatim (#PCDATA)>
<!-- Strictly speaking, ‘%INTEGER;’ is a parameter

entity (cf. [29, pp. 163–164]) standing for parsed
character data (‘#PCDATA’). But we use it for
sake of readability, whenever the content of a
text node is an integer, because dtds’
formalism does not know this type. ‘ff’ is for
an unspecified number of following pages.

-->

Figure 3: Excerpt from our dtd: specification of
pages from a journal or book.

MlBibTEX more precisely, all its elements and func-
tions used within path expressions are described in
[13]. On another point, we think that developing
new functions in Scheme by MlBibTEX’s end-users
is only needed for very specific applications, so re-
ferring to an introductory book such as [32] is suffi-
cient to understand the given examples. MlBibTEX
has been developed using the fifth revision of this
language [19].

A small example

Let us consider the bibliographical entry given in
Figure 1. Even if it roughly looks like a BibTEX
entry, we can notice the use of syntactic features
specific to MlBibTEX: a LANGUAGE field7, some key-
words for introducing the different parts of a person
name: ‘first’, ‘last’. All these syntactic features
are described precisely in [13].

If this entry is cited throughout a document,
the corresponding bibliographical reference, to be
put at the ‘References’ section, looks like:

[1] Frank Thys. Auf der Spur des Vernich-
ters. In Wolfgang Holbein, editor, Di-
noland , pp. 353–437, Bergisch Gladbach,
August 1997. Bastei Lübbe.

We got this result by using ‘old’ BibTEX, operat-
ing on an ‘old’ bibliography (.bib) file. The bibli-
ography style used above is plain.bst, that is, items
are labelled by numbers, and first names are not

7Also used in conjonction with the mlbib package [23] or
the natbib package [7], but in MlBibTEX, the corresponding
values need not to be surrounded by braces or double-quote
characters.

FUNCTION {multi.page.check}
{ ’t := % t is given the value of the PAGES field,

% popped from the stack.
#0 ’multiresult := % I.e., multiresult ← false.

{ multiresult not % While multiresult is
t empty$ not % false and t non-empty,
and % do

}
{ t #1 #1 substring$ % compare t’s first

duplicate$ "-" = % character with
swap$ duplicate$ "," = % ‘-’, ‘,’, ‘+’;
swap$ "+" =
or or

% if success, update multiresult;
{ #1 ’multiresult := }
% if not, update t by removing its head:
{ t #2 global.max$ substring$ ’t := }

if$
}

while$
multiresult % pushed result.

}

Figure 4: How BibTEX detects that several page
numbers are given.

abbreviated. This reference is supposed to be put
at the end of a document written in English. If
a German-speaking plain bibliography style —e.g.,
dtk.bst, used for the articles of the journal of the
dante8 group, Die TEXnische Komödie —is cho-
sen, that results in:

[1] Frank Thys: Auf der Spur des Vernich-
ters; in Dinoland (Hg. Wolfgang Hol-
bein); S. 353–437; Bergisch Gladbach;
Aug. 1997; Bastei Lübbe.

so the stylistic differences between these two exam-
ples — for example, ‘.’ after the author’s name in
English, ‘:’ in German and French —shows that the
layout of such references is language-dependent, in
the sense that it is influenced by ‘national’ tradi-
tions.

When MlBibTEX parses the entry of Figure 1,
the entry is processed as if it was the xml tree given
in Figure 2; in fact, it results in the sxml9 repre-
sentation of such an xml tree. We can notice that
this choice allows us to structure information given
in some fields, for example, person names, in the
AUTHOR and EDITOR fields, but also the first and last
pages of a story belonging to an anthology, in the

8Deutschsprachige Anwendervereinigung TEX e.V.
9Scheme implementation of xml, described in [20]. See

[15] for more details about its use within MlBibTEX’s imple-
mentation.

WET02 Preprints EuroTEX2005 – Pont-à-Mousson, France

108 Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

<nbst:template match="pages">
<nbst:param name="beginning"/>
<nbst:param name="ending"/>
<nbst:value-of select="$beginning"/>
<nbst:variable name="onepage-elements" select="onepage">
<nbst:choose>

<nbst:when test="$onepage-elements">
<nbst:choose>

<nbst:when test="count($one-page-elements) = 1"><nbst:text>\bblp</nbst:text></nbst:when>
<nbst:otherwise><nbst:text>\bblpp</nbst:text></nbst:otherwise>

</nbst:choose>
<nbst:apply-templates select="$onepage-elements[1]"/>

</nbst:when>
<!-- Otherwise, firstpage element, followed by either the ff or a last page. -->
<nbst:otherwise><nbst:apply-templates/></nbst:otherwise>

</nbst:choose>
<nbst:value-of select="$ending"/>

</nbst:template>

<nbst:template match="onepage">
<nbst:param name="first-time" select="true()"/>
<nbst:variable name="following" select="following-sibling::onepage">
<nbst:choose>

<nbst:when test="$first-time"><nbst:call-template name="tie-number"/></nbst:when>
<nbst:otherwise><nbst:value-of select="."/></nbst:otherwise>

</nbst:choose>
<nbst:if test="$following">

<nbst:text>, </nbst:text>
<nbst:apply-templates select="$following[1]">

<nbst:with-param name="first-time" select="false()"/>
</nbst:apply-templates>

</nbst:if>
</nbst:template>

<nbst:template match="firstpage | pages-verbatim"> <!-- Putting a non-breaking space character -->
<nbst:call-template name="tie-number"/> <!-- before a small number. -->

</nbst:template>

<nbst:template match="ff">
<nbst:text> \bblff</nbst:text>

</nbst:template>

Figure 5: Putting page numbers down in nbst.

PAGES field. Such xml trees are conformant to a
dtd10, an excerpt from which being given in Fig-
ure 3. Syntactically, the PAGES field of MlBibTEX
allows the specification of:

• a single page: {353},
• a range of pages: {353--457},
• the first page of an unspecified number of con-

secutive ones: {353+},
• some enumerated pages: {353,439,519},

10Document Type Definition. A dtd defines a document
markup model [29, Ch. 5]. The dtd we use is a revised version
of what is given in [10].

• otherwise, the value associated with this field is
kept verbatim and becomes the content of the
pages-verbatim element: this content will ap-
pear as it is within any predefined bibliography
style.
The bibliography styles of BibTEX deal with

these different syntactic forms, as it can be seen in
Figure 4, but this style of programming seems to us
to be some hack.

Figure 5 shows how page numbers can be pro-
cessed using nbst. Many tags and attributes are the
same than in xslt, except for the namespace used
as a prefix, which is obviously different. We explain

Preprints EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

109

Entity
reference Character How to produce

it in LATEX
Numeric
entity

& & \& &
' ’ '
&emdash; — --- —
&endash; – -- –
&eol; ¶a \newline

> < >
< > <
&nobsp;b ~
" " "

a‘¶’ is a typographic sign for the end-of-line character [2,
§ 2.85]. In nbst, this entity is used to begin a new line within
generated files.

bNon-breaking space character.

Table 1: Entities usable in nbst.

later what the parameters beginning and ending
are precisely, but intuitively, we can guess that they
are strings to be put before and after the page num-
bers. Let us notice the use of variables —names
that may be bound to values —and of path expres-
sions in match and select attributes’ values. Us-
ing the following-sibling axis allows us to reach
the subtrees at the right of the current node and
sharing the same parent node, that is particularly
useful to implement loops, in the sense of ‘classical’
programming languages. Putting some enumerated
pages would be done this way if we express it using
a ‘classical’ algorithm:

write(tie-number(first(one-page-elements))) ;
loop

one-page-elements ← rest(one-page-elements) ;
exit when one-page-elements = ∅ ;
write(", ␣") ; write(first(one-page-elements)) ;

end loop ;

Figure 5 shows how this algorithm is put into ac-
tion by means of a recursive template, matching the
first element of page numbers not written yet. This
technique is very common in xslt for iterative algo-
rithms.

Let us focus on the texts generated when these
templates are invoked, more precisely, on the con-
tent of the nbst:text tags: we notice the use of ad-
ditional LATEX commands, for example, \bblp (resp.
\bblpp) for one (resp. several) pages. These names
originate from bibliography styles generated by the
makebst program [3] in interface with the babel pack-
age [24, Ch. 9], and are language-dependent. For
example, the \bblp command is expanded in ‘p.’
for ‘page’ in English and French, in ‘S.’ for ‘Seite’ in
German. How to organise them is shown in [14, § 2].

<nbst:template match="lastpage">
<nbst:value-of

select="concat(’&endash;’,.)"/>
</nbst:template>

<nbst:template match="lastpage"
language="french">

<nbst:value-of select="concat(’-’,.)"/>
</nbst:template>

Figure 6: Default and language-dependent
templates.

Special characters can be denoted by entity refer-
ences, like in xml [29, pp. 48–49]. MlBibTEX knows
more predefined character entities than xml—e.g.,
‘&endash;’, used in Figure 6 —they are summarised
in Table 1: for each, we give its name, the corre-
sponding character, the way to produce it in LATEX
if this character is special11, the decimal number
coding it w.r.t. Unicode [33].

Now let us introduce the main difference be-
tween xslt and nbst. When a range of pages is
to be given, an en-dash character12 should be put
between the first and last page numbers. More pre-
cisely, this is the convention for most European lan-
guages, including English. But in documents writ-
ten in French, this character tends to be replaced
by a single minus character (‘-’). In our style, this
character is put by the template processing the last
page number. Figure 6 gives two version of this tem-
plate: a default version, without the language, and
another version, suitable for the French language.
This language attribute does not exist in xslt; in
nbst, a template with it has higher priority than the
same template without.

Style for a entry type

As we can read in [24, § 13.6.3], introducing small
changes in a bibliography style written using the
bst language is quite easy. Writing the whole of a
style is a worthwhile exercise: we have to know what
has been pushed onto the stack handled by BibTEX,
what we can pop from it, possibly after applying the
duplicate$ function when this value is needed af-
terwards by the program. This language is not mod-
ular, we have to take care of such questions from a

11MlBibTEX uses it only when the mode attribute of the
nbst:output element (cf. Figure 12) is LaTeX. For example,
the element:

<nbst:text>The Bull & the Spear</nbst:text>

produces ‘The Bull \& the Spear’ (resp. ‘The Bull & the
Spear’) if the mode is LaTeX (resp. text).

12That is, a dash as wide as the ‘n’ letter.

WET02 Preprints EuroTEX2005 – Pont-à-Mousson, France

110 Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

<inproceedings> ::=
"\bibitem{" <id> "}¶" <authors> <title> <in-eds-booktitle> [", " <volume-number-series>]
[", " <pages>] <date-etc> ["¶\newblock " <note> "."] "¶¶" ;

<authors> ::= <name-list> ".¶\newblock " ;
<editors> ::= <name-list> ", \bbled, " if |<name-list>| = 1 |

<name-list> ", \bbleds, " if |<name-list>| > 1 ;
<name-list> ::= <name> {", " <name>} [", \bbland\ " <name> | " \bbletal"] ;
<title> ::= change-case(t)(<string>) ".¶\newblock " ;
<booktitle> ::= "\emph{" <string> "}" ;
<in-eds-booktitle> ::= "\capitalize\bblin " [<editors>] <booktitle> ;
<volume-number-series> ::= "\bblvol" <tie-number><volume> " \bblof \emph{" <series> "}" |

"\bblno" <tie-number><number> " \bblin " <series> ;
<pages> ::= "\bblp" <tie-number(s)> if |<tie-number(s)>| = 1 |

"\bblpp" <tie-number(s)> if |<tie-number(s)>| > 1 ;
<tie-number(s)> ::= <non-breaking-space-character> <number(s)> if <number(s)> < 3 |

" " <number(s)> if <number(s)> ≥ 3 ;
<date-etc> ::= [", " <address> ", "] <date> [". " <org-pub>] ". " |

[". " <org-pub>] ", " <date>
<org-pub> ::= [<organisation> ", "] <publisher> ;

‘|. . .|’ is for the number of elements of a list, ‘ . . .’ for the length of a string. Cf. Table 1 about the ‘¶’ sign.

Figure 7: How to put information about a story included into an anthology.

function to another, and the use of only global vari-
ables reinforces this monolithic way of programming.
So, the best method for rewriting a style wholly is to
express it using a grammar, according to a reverse
engineering13 approach. That is, studying bst styles
in order to deduce such a grammar. Of course, such
modelling can also be done from documents giving
rules for bibliographies’ layout, such as [1, § 10] or
[2, §§ 15 & 16].

Figure 7 gives all the possible texts for refer-
ences generated by BibTEX, using a ‘plain’ style and
derived from entries being @INPROCEEDINGS type.
We do not consider cross-referencing ([22, § B.1.4],
[24, § 13.2.5]), not implemented yet in MlBibTEX.
These possible texts are expressed with a formalism
close to ebnf14, that is:
• for each non-terminal symbol, enclosed like an

xml tag, the expression following the ‘::=’ sign

13According to the terminology used in Software Engin-
nering:

• re-engineering consists of transforming a program
written using an ‘old’ language into a new program in a
more modern language: for example, deriving a C pro-
gram from source files written in fortran;

• reverse engineering is the process of analysing soft-
ware in order to recover its design of specification.

As stated in [31, Ch. 34], reverse engineering is part of soft-
ware re-engineering process, in the sense that allows better
understanding of a system.

14Extended Backus-Naur Form. Readers unfamiliar with
this formalism can refer to [4] for an introduction. dtd syntax
originate from it.

and terminated by ‘;’ states how it can be ex-
panded;
• the ‘|’ sign means an alternative, ‘[...]’ is

for an optional part, ‘{...}’ for zero or more
occurrences of its content;
• expressions enclosed by two double quote char-

acters are texts to be put: let us recall that they
are part of LATEX input.
Since this grammar does not model texts to be

parsed, but texts to be generated, we do not have
to be conformant with conditions related to pars-
ing, as that would be the case for a language to
be interpreted or compiled. In fact, most of our
non-terminal symbols are fields’ names of MlBibTEX
(e.g., <title>) or simple types (e.g., <string>).
There is some language abuse — for example, the use
of functions (e.g., change-case15)— but we think
that such a specification is precise and gives a good
overview of the texts to be generated.

So, we are given precise information about the
order in which fields’ values should be placed. As
specified in the file plain.bst, we keep the occur-
rences of the \newblock command, used when the
bibliography is to be ‘open’ —by means of the open-
bib option of the \documentclass command —that
is, each block starting on a new line [24, § 12.2.1].
On another point, some keywords, hard-wired in
this file, are replaced by multilingual commands of
LATEX. By the way, let us remark that we are able

15Analogous to the namesake function in BibTEX [25].

Preprints EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

111

<nbst:template match="inproceedings">
<nbst:call-template name="common-pre"/>
<nbst:variable name="comma-space"

select="’, ’"/>
<nbst:apply-templates select="author"/>
<nbst:apply-templates select="title"

mode="inproc"/>
<nbst:call-template name="in-eds-booktitle"/>
<nbst:call-template

name="volume-number-series">
<nbst:with-param name="beginning"

select="$comma-space"/>
</nbst:call-template>
<nbst:variable name="pages">

<nbst:apply-templates select="pages">
<nbst:with-param name="beginning"

select="$comma-space"/>
</nbst:apply-templates>

</nbst:variable>
<nbst:call-template name="date-etc">

<nbst:with-param name="previous"
select="$pages"/>

</nbst:call-template>
<nbst:apply-templates select="note">

<nbst:with-param
name="beginning"
select="’&eol;\newblock ’"/>

<nbst:with-param name="ending"
select="’.’"/>

</nbst:apply-templates>
<nbst:call-templates name="common-post"/>

</nbst:template>

Figure 8: Building a reference from an
inproceedings element: program using nbst.

to capitalise the result of such a command when
it begins a sentence, by means of the \capitalize
command16. As far as possible, we consider that a
sign of ponctuation terminates the written form of a
field — for example, the list of authors, ended with
a period —but it is not always possible: as another
example, the specification of page numbers may be
followed by a comma if there is an address, by a
period if there is an organisation name. In such a
case, the sign of ponctuation is specified before the
non-terminal symbol it opens in Figure 7.

16This command is not predefined in LATEX, it can be de-
fined as follows:

\def\capitalize#1{%
\def\Capitalize##1{\uppercase{##1}}%
\expandafter\Capitalize#1}

cf. [21] for more details about \expandafter and the defini-
tions of TEX commands.

<nbst:template match="title" mode="inproc">
<nbst:apply-templates match=".">

<nbst:with-param name="emf"
select="false()"/>

<nbst:with-param name="retain-capitals"
select="false()"/>

</nbst:apply-templates>
</nbst:template>

Figure 9: Putting titles down.

Now the role of the two template parameters
beginning and ending, occurring in Figure 5 is
explained. Their use is systematic, as it can be
seen in Figure 8, that ‘implements’ our specifica-
tion. More generally, we can notice that writing
this template matching inproceedings elements is
direct, once we got a grammar for such references.
If we consider Figure 7, the layout for an element
(e.g., <author>) is implemented by a template with
a match attribute; if we implement a non-terminal
symbol grouping the layout of several elements (e.g.,
<in-eds-booktitle>), a named template does that.
The named template common-pre opens a reference,
by putting the \bibitem command [24, § 12.1.2],
whereas the common-post template closes it. Both
may used to insert multilingual directives, for ex-
ample, the otherlanguage environment of the babel
package [24, § 9.2.1].

Let us mention a last point about signs of ponc-
tuation: several consecutive ones may conflict. In
practice, such a case occurs when a period is to be
put after a string ending with an exclamation or
question mark, or with a period belonging to an ab-
breviation. BibTEX solves this case by means of its
function add.period$ [25], provided that the string
has not been popped yet. In xslt and nbst, a string
is output by means of the value-of element, un-
less it is processed within a template that becomes
the content of a variable. Thereby the result of this
template can be memoized and reused later. Let us
look at Figure 8: the string result of invoking the
template matching the pages element becomes the
value of the pages variable, which is passed to the
named templates date-etc.

Refining the way to process title elements,
let us remark that it depends on the entry type:
within the bibliography style plain.nbst, they are put
down using italic characters for an entry type being
type @BOOK, written using roman characters without
quotation marks if this type is @INPROCEEDINGS. In
this last case, we process such an element with a

WET02 Preprints EuroTEX2005 – Pont-à-Mousson, France

112 Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

<nbst:template match="title">
<nbst:param name="emf" select="true()"/>
<nbst:param name="quotedbf" select="false()"/>
<nbst:param name="retain-capitals" select="true()"/>
<nbst:param name="ending" select="’.&eol;\newblock’"/>
<nbst:if test="$quotedbf"><nbst:text>\begin{bblquotedtitle}</nbst:text></nbst:if>
<nbst:if test="$emf"><nbst:text>\emph{</nbst:text></nbst:if>
<nbst:variable name="title-put">

<nbst;choose>
<nbst:when test="$retain-capitals"><nbst:apply-templates/></nbst:when>
<nbst:otherwise>

<nbst:apply-templates select="node()[1]">
<nbst:with-param name="retain-capitals" select="false()"/>
<nbst:with-param name="no-left-lowercase" select="true()"/>

</nbst:apply-templates>
<nbst:apply-templates select="node()[position() > 1]">

<nbst:with-param name="retain-capitals" select="false()"/>
</nbst:apply-templates>

</nbst:otherwise>
</nbst:choose>

</nbst:variable>
<nbst:value-of select="$title-put"/>
<nbst:if test="$emf"><nbst:text>}</nbst:text></nbst:if>
<nbst:if test="$quotedbf"><nbst:text>\end{bblquotedtitle}</nbst:text></nbst:if>
<nbst:call-template name="adjoin-sign">

<nbst:with-param name="the-string" select="$title-put"/>
<nbst:with-param name="ending" select="$ending"/>

</nbst:call-template>
</nbst:template>

Figure 10: Putting titles down (continued).

mode attribute, as shown in Figure 9. The tem-
plate matching title elements without any mode —
cf. Figure 10— allows us to define parameters for
ruling the layout and give them default values used
when we display the title of a book:
• emf: if true, use italic characters;
• quotedbf: if true, use language-dependent quo-

tation marks, provided by the bblquotedtitle
environment (cf. [14, § 2]);
• retain-capitals: if false, converting the title

to lowercase except at the beginning;
• ending: the string to be put after the title. The

named template adjoin-sign prevents conflict
between the last character of the title and the
value of ending.

As shown in Figure 9, this template with the mode
attribute set to inproc only consists of passing suit-
able values to the general template of Figure 10.
Processing titles according to this inproc mode can
be redefined for the French language, using French
quotation marks, or the German language, using
italic characters, as written in Figure 11.

Core of a style

When MlBibTEX builds an xml-like tree with all the
entries to be processed, this tree is rooted by an el-
ement so-called mlbiblio. Figure 12 gives the root
element of our ‘new plain’ bibliography style and
shows how to process all the entries. Opening the
thebibliography environment [24, § 12.1.2] is done
by the named template put-preamble, which may
put additional LATEX definitions, especially those in-
cluded in BibTEX’s preambles [24, § 13.2.4]. Sym-
metrically, the putpostamble template closes the
bibliography.

We can also see how entries are sorted before
they are dispatched according to their type. Like
the namesake element of xslt, the first occurrence
specifies the primary sort key, the second occurrence
the secondary sort key, used for elements left un-
sorted, and so on. The first occurrence could have
been specified by:
select="author/name[1]/personname/last"

that is, sorting entries w.r.t. the family name of
the first author, but that would discard organisation

Preprints EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

113

<nbst:template match="title" mode="inproc"
language="french">

<nbst:apply-templates match=".">
<nbst:with-param name="emf"

select="false()"/>
<nbst:with-param name="quotedbf"

select="true()"/>
</nbst:apply-templates>

</nbst:template>

<nbst:template match="title" mode="inproc"
language="german">

<nbst:apply-templates match=".">
<nbst:with-param

name="ending"
select="’;&eol;\newblock’"/>

</nbst:apply-templates>
</nbst:template>

Figure 11: Putting titles down w.r.t. French and
German styles.

names as authors. The solution we put in Figure 12
consists of concatenating three strings related to the
first author, two of them being always empty:
• the family name, if this name is for a person,
• the sort key of an organisation name, if given,
• the organisation name itself, if the sort key has

not been given.
For first authors that are organisation names,

only the first occurrence of the nbst:sort element
is of interest, the others do nothing. When sort-
ing entries w.r.t. names is finished, we sort w.r.t.
years, then months. This last sort order can seem
to be some hack since it uses the interface with
Scheme functions (cf. § B), but let us recall that
programming such a sort order is very difficult in
bst and unused in practice. However, we think that
our successive nbst:sort elements are clearer than
the presort, sortify and purify$ functions used
within bibliography styles written in bst.

Splitting a style into several files

As abovementioned, the bst language is not mod-
ular, and all the definitions for a particular style
must be stored in the same file, what is a drawback
since several styles share the same definitions. That
complicates the mainenance of bibliography styles
if some definitions need some enrichment. Besides,
it is difficult, when we are studying a style, to de-
termine what is specific or common to other styles.
The nbst language includes:
• an nbst:include element, to import definitions

explicitly from another nbst file;

• implicit importations, described in [14, § 3.1].
Hereafter, we show how to spread out the templates
we are writing over different files, in order to take as
much advantage as possible of implicit importations
of nbst. Let us recall that we are developing a new
version of the ‘plain’ bibliography style, that is, the
master file is plain.nbst.
• The global.nbst can be viewed as MlBibTEX’s

initial library of definitions using nbst: it in-
cludes general named templates such as:

adjoin-sign date-etc tie-number

as well as template matching the following ele-
ments:

address one-page
booktitle orgnization
ff pages
firstpage pages-verbatim
lastpage publisher
note title

Putting more templates in this file may seem
to be of interest, but let us recall that in nbst,
imported templates have the same priority than
other elements17: so ‘global’ elements cannot be
redefined18, unless adding a language or mode
attribute to the redefinition.

• Of course, the plain.nbst file — the master file
for this bibliography style —must include its
root (nbst:bst) element and the ‘main’ tem-
plate matching an mlbiblio element, given in
Figure 12. The following named templates, re-
lated to references’ labels, should be included
in this file, too:

common-post put-postamble
common-pre put-preamble

The layout of the following element depends
on the bibliography style, so the corresponding
templates have to be stored in the plain.nbst file:

author inproceedings series
editor number volume

as well as the named templates, for the same
reason:
in-eds-booktitle volume-number-series
org-pub

• The ‘French’ definition of the template match-
ing a lastpage element (cf. Figure 6) is gen-
eral for French-speaking styles, not directly re-
lated to ‘plain’ styles, so we place it onto the

17This is not the case in xslt if the xsl:import element is
used.

18More exactly, if there is conflict between templates, it is
unpredictible to know which will be run.

WET02 Preprints EuroTEX2005 – Pont-à-Mousson, France

114 Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

<nbst:bst version="1.3" id="plain" xmlns:nbst="http://lifc.univ-fcomte.fr/~hufflen/mlbibtex">

<nbst:output method="LaTeX" encoding="ISO-8859-1"/>
<!-- This encoding allows accented letters of Western European Languages [5, Table C.4]. -->

<nbst:template match="mlbiblio">
<nbst:call-template name="put-preamble">

<nbst:with-param name="longest-label" select="count(*)"/>
</nbst:call-template>
<nbst:apply-templates>

<nbst:sort select="concat(author/name[1]/personname/last,
author/name[1]/othername/@sortingkey,
author/name[1]/othername[not(@sortingkey)])"/>

<nbst:sort select="author/name[1]/personname/first"/>
<nbst:sort select="author/name[1]/personname/von"/>
<nbst:sort select="author/name[1]/personname/junior"/>
<nbst:sort select="year" data-type="number"/>
<nbst:sort select="call(month-position,month)" data-type="number"/>

</nbst:apply-templates>
<nbst:call-template name="put-postamble"/>

</nbst:template>

...

</nbst:bst>

Figure 12: Root element for a program in nbst —Organising all the entries to generate references.

-french.nbst file, that is, the file grouping the
general definitions for the French language.

• On the contrary, the French and German re-
definitions of the template matching title el-
ements in inproc mode (cf. Figure 11) belong
both to the ‘plain’ bibliography style so they
should be put into the files plain-french.nbst and
plain-german.nbst.

Conclusion

We think that when a new tool or a new program-
ming language is developed, its conceptor(s) should
provide methodology and advice about it. Often
teachers of programming languages notice that stu-
dents may program badly in a good language. Let
us go back to BibTEX, we personally missed — in
the past, a long time before we decided to develop
MlBibTEX— a didactic introduction to the bst lan-
guage like [28]. Likewise, an overview for writers
of LATEX extensions such as [24, Appendix A] was
missing for a long time.

In this article, we have not shown all the fea-
tures of MlBibTEX. For example, we have not gone
thoroughly into multilingual features — in order to
show that our approach was mostly suitable for de-
signing styles using xslt, too—and ‘new plain’ style
was implicitly supposed to be language-dependent
[13], that is, each reference is expressed using the

language’s entry. In fact, our goal was to show that
nbst allowed us to write bibliography styles in ele-
gant manner, provided that we are given a precise
specification of what to put. So we are able to build
a solid basis for a style, and people could easily en-
rich it with new language-dependent templates by
using MlBibTEX’s implicit importation.

Now we are rewriting predefined bibliography
styles of BibTEX. Most of them have already been
redesigned, but this work is not finished yet at the
time we finish writing this article. We hope that
these explanations would help people enrich these
new styles, especially in order to adapt them to other
languages.

Acknowledgements

Thanks to Volker R. W. Schaa, who proof-read the
German translation of the abstract.

A bst vs nbst

A precise comparison between bst and nbst is diffi-
cult, since these two languages belong to very differ-
ent programming paradigms. The former is based
on handling a stack (see [28] for a didactic introduc-
tion to this aspect), the latter encourages rule-based
programming. They do not belong to the same time,
either: the former has been influenced by assembly

Preprints EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

115

bst expression “Equivalent” expression in nbst Kinda

I1 I2 > I1\ > I2\ P
I1 I2 < I1\ < I2\ P
I1 I2 = I1\ = I2\ P
S1 S2 = S1

\ = S2
\ P

I1 I2 + I1\ + I2\ P
I1 I2 - S1

\ - S2
\ P

S1 S2 * concat(S1
\,S2

\) P

S add.period$

<nbst:call-template name="adjoin-sign">
<nbst:with-param name="the-string" select="S\"/>
<nbst:with-param name="ending" select="’.’"/>

</nbst:call-template>

Eb

S "t" change.case$ concat(substring(S\,1,1),lowercase(substring(S\,2))) Pc

S "l" change.case$ lowercase(S\) P
S "u" change.case$ uppercase(S\) P

S chr.to.int$ (char->integer S\) S
cite$ @id P

L empty$ not(string(L\)) P

I F1 F2 if$

<nbst:choose>
<nbst:when test="I\ > 0">F1

\</nbst:when>
<nbst:otherwise>F2

\</nbst:otherwise>
</nbst:choose>

E

I int.to.chr$ (integer->char I\) S
I int.to.str$ string(I\) P
L missing$ not(L\) P

newline$ <nbst:text>&eol;</nbst:text> or <nbst:value-of select="’&eol;’"/> E
S num.names$ count(name) if name(S\) ∈ {author, editor} P

preamble$ @preamble P
S purify$ call(bst-purify,S\) Pd

quote$ <nbst:text>"</nbst:text> or <nbst:value-of select="’"’"/> E

S I1 I2 substring$
substring(S\,I1\,I2\) if I1 > 0

substring(S\,string-length(S\) + I1\ − I2\ + 2,I2\) if I1 < 0
Pc

S text.length$ string-length(S\) P
S I text.prefix$ substring(S\,1,I\) Pc

type$ name() P
S warning$ <nbst:warning>S\</nbst:warning> E
S width$ (tex-width S\) Se

S write$ <nbst:value-of select="S\"/> E

aQualifies the given expression in nbst: ‘E’ is for ‘element’, ‘P’ for ‘path expression’, ‘S’ for ‘Scheme expression’.
bThe adjoin-sign is included in MlBibTEX’s initial library.
cLet us recall that indexing strings is one-based in XPath and nbst, whereas it is zero-based in Scheme.
dThis Scheme function is given in Figure 13. Useless in practice (see Figure 8)!
eNot implemented yet (always returns "0").

Table 2: Translation of most bst statements given in [24, Table 13.8]

languages, the latter has taken advantage of a mod-
ern langage, suitable for handling documents and
designed for a large purpose.

Some statements of bst are not really translat-
able into nbst: for example, the assignment (‘:=’),
because nbst is like a purely functional language, in
the sense that a variable —or a parameter—can-
not be changed, once it has been given a value. On

the other hand, nbst allows recursive templates, like
in xslt, what is useful for iterative programming
(cf. Figure 5) and replaces the while$ function of
bst.

The call.type$ function of bst does not have
a direct equivalent, either: such an operation is per-
formed by pattern-matching by means of the match
attribute of suitable nbst:template elements. The

WET02 Preprints EuroTEX2005 – Pont-à-Mousson, France

116 Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

(define (bst-purify string-0)
(let thru ((index (- (string-length string-0) 1))

;; Current index, we are going backward. The second argument allows us to accumulate retained
;; characters in a list, we begin with an empty list:
(accumulator ’()))

(if (negative? index)
;; The string has been processed, we convert the list of accumulated characters into a string:
(list->string accumulator)
(thru (- index 1) (let ((current-char (string-ref string-0 index)))

;; Discarding it if it is not alphanumeric:
(if (or (char-alphabetic? current-char) (char-numeric? current-char))

(cons current-char accumulator)
accumulator))))))

Figure 13: Scheme function implementing the bst function purify$.

format.name$ function is replaced by handling path
expressions like in XPath for subtrees for authors and
editors.

Table 2 is an attempt to express the relation-
ship between bst statements and corresponding real-
isations in nbst. In fact, it emphasises which state-
ments are easily translatable, which are not. This
table does not include bst functions such as ‘:=’,
while$, call.type$, skip$. Likewise, we did not
put bst functions directly related to BibTEX’s stack
management: duplicate$, stack$, swap$, top$.

For the other bst functions, we make precise
its operands: I is for an integer, S for a string,
L for any value, F for a function. When several
operands are the same type, we use indices. We use
the ‘. . .\’ notation to mean ‘the translation of an
operand in nbst’: for example, the if$ function of
bst pops three values from the stack, the translation
of the first should be used inside the value of a test
attribute, the others should be translated into nbst
elements put as contents of an nbst:if element.

As it can be seen in Table 2, the direct trans-
lation of some statements needs to call functions di-
rectly written in Scheme: we put them for sake of
completeness, but in practice, most of these func-
tions are useless when a style is wholly rewritten
using nbst (cf. § B). Last, let us remark that in
the path expressions given in this table — @id and
@preamble—the current node is supposed to be the
node for an entry (inproceedings, book, . . .)

B Interface with Scheme

Path expressions used within nbst include calls to
external functions written in Scheme and returning
strings. The syntax is:

call(function-name,arg1,...,argn)

where function-name is the function’s name, ap-
plied to arg1, . . . , argn (n ∈ N). Now we got some
experience in writing bibliography styles, and as far
as we know, there are three reasons for using such
functions within bibliography style files:

• functions related to TEX’s features: for exam-
ple, returning the width of a string, expressed
in TEX’s units (cf. Table 2), as another exam-
ple, searching LATEX source files: for instance,
we have to do that in order to know the docu-
ment’s language19;

• operations that would be tedious with the func-
tions of XPath’s library: an example appearing
in Table 2 is the bst-purify function;

• functions used to sort entries: e.g., the func-
tion month-position, that allows the sort of
month names according to the chronological or-
der, used in the template given in Figure 8.

In Figure 13, we give the exact equivalent for
the purify$ function of bst, in order to give some
idea about how to deal with strings in Scheme. Let
us remark that this operation — used in BibTEX to
build strings to be sorted lexicographically— is use-
less practically since it is better to use successive
nbst:sort elements as we show in Figure 12.

In addition to the bst-purify function, we give
a second example written in Scheme in Figure 14:
the month-position function, used to sort month
names, as shown in Figure 12. As abovementioned,
this way may be thought as ad hoc method, never-
theless, let us remark that such a sort is not provided
by ‘old’ BibTEX.

19See [16] for more details about this problem. MlBibTEX
also searches auxiliary (.aux) files produced by LATEX, but not
whilst a bibliography style is applied.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

117

(define month-position
(let ((month-name-list

’("jan" "feb" "mar" "apr" "may" "jun" "jul" "aug" "sep" "oct" "nov" "dec")))
(lambda (string-0)

(let thru ((month-name-list-0 month-name-list)
(current-position 0))

(if (or (null? month-name-list-0)
;; This way, elements with a non-recognised or empty month name will be put after those with
;; an actual month name after the sorting operation.
(string=? (car month-name-list-0) string-0))

(number->string current-position) ; Final result as a string.
(thru (cdr month-name-list-0) (+ current-position 1)))))))

Figure 14: Scheme function used to sort month names by sorting corresponding positions.

References

[1] Judith Butcher: Copy-Editing. The Cam-
bridge Handbook for Editors, Authors, Publish-
ers. 3rd edition. Cambridge University Press.
1992.

[2] The Chicago Manual of Style. The University
of Chicago Press. The 14th edition of a manual
of style revised and expanded. 1993.

[3] Patrick W. Daly: Customizing Bibliographic
Style Files. Version 3.2. February 1999. Part of
BibTEX’s distribution.

[4] Lars Marius Garshol: bnf and ebnf:
What Are They and How Do They Work?
July 2003. http://www.garshol.priv.no/
download/text/bnf.html.

[5] Michel Goossens and Sebastian Rahtz,
with Eitan M. Gurari, Ross Moore and
Robert S. Sutor: The LATEX Web Compan-
ion. Addison-Wesley Longmann, Inc., Reading,
Massachusetts. May 1999.

[6] Vidar Bronken Gundersen and Zeger W.
Hendrikse: BibTEX as xml Markup. January
2003. http://bibtexml.sourceforge.net.

[7] Harald Harders: „Mehrsprachige Literatur-
verzeichnisse: Anwendung und Erweiterung des
Pakets babelbib“. Die TEXnische Komödie,
Bd. 4/2003, S. 39–63. November 2003.

[8] Erik van Herwijnen: Practical sgml. Inter-
pharm Press. December 1994.

[9] Jean-Michel Hufflen: “MlBibTEX: a New Im-
plementation of BibTEX”. In: EuroTEX 2001,
p. 74–94. Kerkrade, The Netherlands. Septem-
ber 2001.

[10] Jean-Michel Hufflen: “Multilingual Features
for Bibliography Programs: From xml to
MlBibTEX”. In: EuroTEX 2002, p. 46–59. Ba-
chotek, Poland. April 2002.

[11] Jean-Michel Hufflen: “Mixing Two Bibliog-
raphy Style Languages”. In: ldta 2003, Vol.
82.3 of entcs. Elsevier, Warsaw, Poland. April
2003.

[12] Jean-Michel Hufflen: “European Bibliogra-
phy Styles and MlBibTEX”. tugboat, Vol. 24,
no. 3. EuroTEX 2003, Brest, France. June 2003.

[13] Jean-Michel Hufflen: “MlBibTEX’s Version
1.3”. tugboat, Vol. 24, no. 2, p. 249–262. July
2003.

[14] Jean-Michel Hufflen: “Making MlBibTEX Fit
for a Particular Language. Example of the Pol-
ish Language”. Biuletyn gust, Vol. 21, p. 14–
26. 2004.

[15] Jean-Michel Hufflen: “A Tour around
MlBibTEX and Its Implementation(s)”. Biule-
tyn gust, Vol. 20, p. 21–28. In BachoTEX 2004
conference. April 2004.

[16] Jean-Michel Hufflen: “MlBibTEX: beyond
LATEX”. In: International Conference on TEX,
xml, and Digital Typography, Vol. 3130 of
lncs, p. 203–215. Springer, Xanthi, Greece.
August 2004.

[17] Jean-Michel Hufflen: Multilingual Bibliogra-
phy Styles: nbst vs xslt. To appear in Proc.
guit conference, Pisa. October 2004.

[18] International Standard iso/iec 10179:1996(e):
dsssl. 1996.

[19] Richard Kelsey, William D. Clinger,
Jonathan A. Rees, Harold Abelson, Nor-
man I. Adams iv, David H. Bartley,
Gary Brooks, R. Kent Dybvig, Daniel P.
Friedman, Robert Halstead, Chris Han-
son, Christopher T. Haynes, Eugene Edmund
Kohlbecker, Jr, Donald Oxley, Kent M.
Pitman, Guillermo J. Rozas, Guy Lewis
Steele, Jr, Gerald Jay Sussman and Mitchell

WET02 Preprints EuroTEX2005 – Pont-à-Mousson, France

118 Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

Wand: Revised5 Report on the Algorithmic
Language Scheme. February 1998. http://
www.cs.indiana.edu/scheme-repository/.

[20] Oleg Kiselyov: “A Better xml Parser through
Functional Programming”. In: 4th Inter-
national Symposium on Practical Aspects of
Declarative Languages, Vol. 2257 of lncs.
Springer. 2002.

[21] Donald Ervin Knuth: Computers & Typeset-
ting. Vol. A: the TEXbook. Addison-Wesley
Publishing Company, Reading, Massachusetts.
1984.

[22] Leslie Lamport: LATEX. A Document Prepa-
ration System. User’s Guide and Reference
Manual. Addison-Wesley Publishing Company,
Reading, Massachusetts. 1994.

[23] Wenzel Matiaske: Multilinguale Zitierfor-
mate. Oktober 1995. CTAN:macros/latex/
contrib/supported/mlbib/.

[24] Frank Mittelbach and Michel Goossens,
with Joannes Braams, David Carlisle,
Chris A. Rowley, Christine Detig and
Joachim Schrod: The LATEX Companion. 2nd
edition. Addison-Wesley Publishing Company,
Reading, Massachusetts. August 2004.

[25] Oren Patashnik: Designing BibTEX Styles.
February 1988. Part of BibTEX’s distribution.

[26] Oren Patashnik: BibTEXing. February 1988.
Part of BibTEX’s distribution.

[27] Chris Putnam: Bibliography Conver-
sion Utilities. February 2005. http:
//www.scripps.edu/~cdputnam/software/
bibutils/bibutils.html.

[28] Bernd Raichle: Tutorium: Einführung in die
BibTEX-Programmierung. Handouts für dante
2002. Februar 2002.

[29] Erik T. Ray: Learning xml. O’Reilly & Asso-
ciates, Inc. January 2001.

[30] John E. Simpson: XPath and XPointer.
O’Reilly & Associates, Inc. August 2002.

[31] Ian Sommerville: Software Engineering. 5th
edition. Addison-Wesley Publishing Company.
1996.

[32] George Springer and Daniel P. Friedman:
Scheme and the Art of Programming. The mit
Press, McGraw-Hill Book Company. 1989.

[33] The Unicode Consortium: The Unicode
Standard Version 4.0. Addison-Wesley. August
2003.

[34] Doug Tidwell: xslt. O’Reilly & Associates,
Inc. August 2001.

[35] W3C: xml Path Language (XPath). Ver-
sion 1.0. w3c Recommendation. Edited
by James Clark and Steve DeRose. Novem-
ber 1999. http://www.w3.org/TR/1999/
REC-xpath-19991116.

[36] W3C: xsl Transformations (xslt). Ver-
sion 1.0. w3c Recommendation. Edited by
James Clark. November 1999. http://www.w3.
org/TR/1999/REC-xslt-19991116.

[37] W3C: Extensible Stylesheet Language (xsl).
Version 1.0. w3c Recommendation. Edited by
James Clark. October 2001. http://www.w3.
org/TR/2001/REC-xsl-20011015/.

[38] Norman Walsh and Leonard Muellner: Doc-
Book: The Definitive Guide. O’Reilly & Asso-
ciates, Inc. October 1999.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET02

Bibliography Styles Easier with MlBibTEX
Jean-Michel Hufflen

119

“La machine à formulaires”
(the forms’ machine),

or TEX for a Kafkaian world

Antoine Lejay

November 29, 2004

Abstract

This article describes the Machine à formulaires, whose goal is to
fill in different forms from a single file. Its aim is to help candidates
to positions of (assistant) professors in a French University not to
lose time in copying various informations regarding each position they
apply.

1 Introduction

This article contains a short description of a set of TEX files designed to
help candidates to professors’ or assistant professors’ positions in French
Universities to fill in heavy forms. In some sense, it is similar to the AMS
cover initiative [1], but with a different philosophy and design, and where
informations specific to each position are reported in each form.

The Machine à formulaires (the forms’ machine, or MAF in short) has
been made available since 2001 on the WEB sites of the Opération Postes [5]
and the Guilde des Doctorants [2]1 whose goal is to help Ph.D. holders looking
for a job. It seems to have been appreciated by numerous candidates, since it
allows them to gain a lot of time in the constitution of their application forms.
The MAF does not need any real knowledge in TEX/LATEX (only common
sense) and shows the ability of TEX to deal with tasks such as automatic
creation of forms without using exterior softwares.

Basically, all the informations are entered in a single file with a rather nat-
ural syntax (provided by the keyval package) and any repetition is avoided.

1A package with the same goal have been already available on that site and the MAF
represents an attempt to have a more flexible way to do the job.

WET03 Preprints EuroTEX2005 – Pont-à-Mousson, France

120 La machine à formulaires (The Forms’ Machine)
Antoine Lejay

Various forms may be produced simply by changing the class file which is
loaded. Of course, data and presentation commands are completely sepa-
rated.

2 The difficulty of applying to a French uni-

versity...

The procedure for applying to a French university as mâıtre de conférences
(assistant professor) or professor relies on a national-wide, official and strict
process. Almost all the French universities are public and then (assistant)
professors are state-employees. In automn and winter, there are discussions
between each university and the French Department of Education to obtain
the creation of new positions, or the replacement of people leaving or retiring.
Then all the available positions, whatever the university and the domain,
are published around February of each year in the Journal Officiel de la
République Française (also called the “JO”), which is a daily publication for
the new legal or official texts (laws, decrees, ...) of the French government.
In the JO, a range of dates are given for: applying for a position (for the
candidate), choosing the candidates the university wishes to hire and sending
their name to the French Department of Education. The JO also specifies
what the applicants send to the universities.

Basicall, to each position is assigned: (a) an identification number; (b)
a university; (c) one or many research domains. Generally, the lab propos-
ing this position may be deduced from this information, but this is not al-
ways true. The research domains are classified, each one corresponding to
a subgroup of the Conseil National des Universités (CNU). Each of these
subgroups is labelled by a number (for example, 25 for Pure Mathematics,
26 for Applied Mathematics, 27 for Computer Sciences, ...). Every French
Ph.D. thesis is also classified according to these domains (but a Ph.D. holder
is not restricted to apply to positions only in his domain); (d) possibly some
precisions about the (research or teaching) skills that are required (The po-
sition may be for a team within a lab, but it may also happen that all the
teams of a lab have to choose together who to hire); (e) possibly other legal
informations that would be too long to explain here. Yet it concerns only a
few positions each year.

For example, one could read in the JO containing some lists of positions
looking like

Preprints EuroTEX2005 – Pont-à-Mousson, France WET03

La machine à formulaires (The Forms’ Machine)
Antoine Lejay

121

Postes de Mâıtres de conférences
...
26e section : mathématiques appliquées et applications des mathématiques
Université Grenoble-I : et 27e section, bio-informatique : 1445.
Université de Pau : 0706.
...

The first position — identified by the number 1445 — is available at one
of the two universities of the city of Grenoble. It is primarily for people
working in bio-informatic, either with a Ph.D. in Computer Science or Ap-
plied Mathematics. The applicant have to contact the University Grenoble I
if she/he want to known which lab or team is concerned by this position.
The second position, at University of Pau, is for an applied mathematician
whatever his/her speciality. Of course, the priority will generally be given to
the candidates that may interact with the people there.

Once having read the JO, the candidate willing to apply for some position
shall send to the university offering it two copies of: (a) a normalized form
(nicknamed2 Annexe B by the candidates, since its presentation appears
each year in the JO in the Section Appendix B) in which he states he applies
to this position, with personal informations and all the informations given
above (identification number, ...); (b) a curriculum vitæ whose first page
(nicknamed Annexe C, since its appears each year in the Section Appendix C)
also follows a normalized presentation with again these informations. These
two forms may be found in Figure 1

Since a candidate generally send 10, 20 or more application forms that
are all different, filling them within a few weeks takes a lot of time, increases
the natural stress of the candidate (it is not easy to get a job) and looks like
an administrative nightmare.

3 Goals and design

Of course, in days where everybody has access to a computer, the candidate
may wish to produce automatically these forms. A truly helpful code shall
in my opinion follow the following specifications: (a) the syntax shall be
simple and rather natural; (b) data and presentation shall be separated;
(c) replication of information shall be limited to reduce the risk of errors;
(d) it must be system independent to be available to the maximum amount
of people; (e) extensions must be easy to write in order to produce envelops
labels, cover letters,...

2It is interesting to note how an administration tends to create its own jargon...

WET03 Preprints EuroTEX2005 – Pont-à-Mousson, France

122 La machine à formulaires (The Forms’ Machine)
Antoine Lejay

D
É

C
L

A
R

A
T

IO
N

D
E

C
A

N
D

ID
A

T
U

R
E

À
U

N
E

IN
S

C
R

IP
T

IO
N

À
L

A
M

U
T

A
T

IO
N

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
/

,
A

U
D

É
T

A
C

H
E

M
E

N
T

,
O

U
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

//
//

/
A

U
R

E
C

R
U

T
E

M
E

N
T

1

S
U

R
U

N
E

M
P

L
O

I
D

E
M

A
ÎT

R
E

D
E

C
O

N
F

É
R

E
N

C
E

S
(A

n
n

ée
20

04
)

(d
éc

re
t

n
o

84
-4

31
d

u
6

ju
in

19
84

m
o

d
ifi

é)

ad
re

ss
ée

au
ch

ef
d

’é
ta

b
li

ss
em

en
t

d
e

:
U

n
i

v
e

r
s

i
t

é
d

e
P

r
o

v
e

n
c

e
:

A
i

x
-

M
a

r
s

e
i

l
l

e
I

S
ec

ti
on

C
N

U
:

2
6

P
ro

fi
l

:
s

t
a

t
i

s
t

i
q

u
e

s
e

t
t

r
a

i
t

e
m

e
n

t
d

u

s
i

g
n

a
l

A
rt

ic
le

:
2

6
-

I
-

1
◦

E
m

p
lo

is
n

o
s

:
1

0
1

2
et

7
6

1
J

ou
rn

al
O

ffi
ci

el
d

u
:

2
7

f
é

v
r

i
e

r
2

0
0

4
.

J
e

so
u

ss
ig

n
é

M
.

P
i

e
r

r
e

I
x

e

N
U

M
E

N
3

:
N

o
d

e
q

u
al

ifi
ca

ti
on

4
:

1
2

3
4

5
6

N
om

p
at

ro
n

y
m

iq
u

e
:

I
x

e

N
om

m
ar

it
al

:

P
ré

n
om

(s
)

:
P

i
e

r
r

e
,

P
a

u
l

D
at

e
et

li
eu

d
e

n
ai

ss
an

ce
:

le
1

j
a

n
v

i
e

r
1

9
7

5
à

P
a

r
i

s

N
at

io
n

al
it

é
:

F
r

a
n

ç
a

i
s

e

A
d

re
ss

e
à

la
q

u
el

le
se

ro
n

t
ac

h
em

in
ée

s
to

u
te

s
le

s
co

rr
es

p
on

d
an

ce
s5

:

N
o

et
ru

e
:

3
B

d
G

a
u

s
s

C
o

d
e

p
os

ta
l

:
7

5
0

0
6

V
il

le
:

P
a

r
i

s
P

ay
s

:

T
él

ép
h

on
e

:
0

1
-

0
0

-
1

2
-

3
4

T
él

éc
op

ie
:

A
d

re
ss

e
él

ec
tr

on
iq

u
e

:
i

x
e

@
l

i
b

r
e

.
f

r

F
on

ct
io

n
s

et
ét

ab
li

ss
em

en
t

ac
tu

el
:

A
T

E
R

;
U

n
i

v
e

r
s

i
t

é
d

e
P

a
r

i
s

2
0

D
ip

lô
m

e
:

D
o

c
t

o
r

a
t

d
e

m
a

t
h

é
m

a
t

i
q

u
e

s
a

p
p

l
i

q
u

é
e

s

d
éc

la
re

fa
ir

e
ac

te
d

e
ca

n
d

id
at

u
re

su
r

l’
em

p
lo

i
ci

-d
es

su
s

d
és

ig
n

é.

F
ai

t
à

P
a

r
i

s
le

1
0

m
a

r
s

2
0

0
4

S
ig

n
at

u
re

1
R

ay
er

le
s

m
en

ti
o

n
s

in
u

ti
le

s.
2

P
o

rt
er

le
n

o

d
e

l’
em

p
lo

i
co

n
ce

rn
é.

D
a

n
s

le
ca

s
o

ù
p

lu
si

eu
rs

em
p

lo
is

p
o

rt
a

n
t

le
m

êm
e

in
ti

tu
lé

(m
êm

es
se

ct
io

n
s

et
p

ro
fi

ls
)

so
n

t
p

u
b

li
és

d
a

n
s

le
m

êm
e

ét
a

b
li

ss
em

en
t,

la
d

em
a

n
d

e
es

t
ré

p
u

té
e

co
n

ce
rn

er
ch

a
cu

n
d

e
ce

s
em

p
lo

is
,

sa
u

f
en

ce
q

u
i

co
n

ce
rn

e
le

s
em

p
lo

is
a

ff
ec

té
s

d
es

in
st

it
u

ts
o

u
d

es
éc

o
le

s
fa

is
a

n
t

p
a

rt
ie

d
e

l’
u

n
iv

er
si

té
p

o
u

r
le

sq
u

el
s

il
co

n
v

ie
n

t
d

e
fa

ir
e

a
ct

e
d

e
ca

n
d

id
a

tu
re

sé
p

a
ré

m
en

t.
3

P
o

u
r

le
s

p
er

so
n

n
el

s
d

e
l’

éd
u

ca
ti

o
n

n
a

ti
o

n
a

le
.

4
P

o
u

r
le

s
ca

n
d

id
a

ts
a

u
re

cr
u

te
m

en
t

u
n

iq
u

em
en

t.
5

L
es

m
o

d
ifi

ca
ti

o
n

s
d

’a
d

re
ss

e
n

e
p

eu
v

en
t

êt
re

p
ri

se
s

en
co

n
si

d
ér

a
ti

o
n

sa
u

f
su

r
le

si
te

in
te

rn
et

A
N

T
A

R
E

S
d

u
ra

n
t

le
d

ép
ô

t
d

e
la

sa
is

ie
d

es
v

œ
u

x
.

L
es

ca
n

d
id

a
ts

so
n

t
in

v
it

és
à

s’
a

ss
u

re
r

le
ca

s
éc

h
éa

n
t

d
e

la
ré

éx
p

éd
it

io
n

d
e

le
u

rs
co

u
ri

er
s.

C
A

N
D

ID
A

T
U

R
E

À
U

N
E

M
P

L
O

I
D

E
M

A
ÎT

R
E

D
E

C
O

N
F

É
R

E
N

C
E

S

(S
ec

on
d

to
ur

—
A

nn
ée

20
04

)
(d

éc
re

t
n◦

84
-4

31
du

6
ju

in
19

84
m

od
ifi

é)

C
U

R
R

IC
U

L
U

M
V

IT
Æ

M
ut

at
io

n
//

//
//

//
//

//
/

1
: –

av
ec

ch
an

ge
m

en
t

de
di

sc
ip

lin
e

;
–

sa
ns

ch
an

ge
m

en
t

de
di

sc
ip

lin
e.

D
ét

ac
he

m
en

t
//

//
//

//
//

//
//

//
//

/
1

R
ec

ru
te

m
en

t
1

© X
ar

ti
cl

e
26

-I
(1

◦
)

©
ar

ti
cl

e
26

-I
(2

◦
)

©
ar

ti
cl

e
26

-I
(3

◦
)

©
ar

ti
cl

e
26

-I
(4

◦
)

A
ca

dé
m

ie
:

A
i

x
-

M
a

r
s

e
i

l
l

e
É

ta
bl

is
se

m
en

t
:

U
n

i
v

e
r

s
i

t
é

d
e

P
r

o
v

e
n

c
e

:

A
i

x
-

M
a

r
s

e
i

l
l

e
I

Se
ct

io
n

C
.N

.U
.

:
2

6
P

ro
fil

:
s

t
a

t
i

s
t

i
q

u
e

s
e

t
t

r
a

i
t

e
m

e
n

t
d

u

s
i

g
n

a
l

E
m

pl
oi

no
s
2

1
0

1
2

et
7

6
1

P
ub

lié
au

Jo
ur

na
l

O
ffi

ci
el

du
2

7
f

é
v

r
i

e
r

2
0

0
4

N
om

pa
tr

on
ym

iq
ue

:
I

x
e

P
ré

no
m

s
:

P
i

e
r

r
e

,
P

a
u

l
né

le
1

j
a

n
v

i
e

r
1

9
7

5
à

P
a

r
i

s

N
at

io
na

lit
é

:
F

r
a

n
ç

a
i

s
e

Si
tu

at
io

n
fa

m
ili

al
e

:
c

é
l

i
b

a
t

a
i

r
e

F
on

ct
io

ns
:

A
T

E
R

E
ta

bl
is

se
m

en
t

ac
tu

el
:

U
n

i
v

e
r

s
i

t
é

d
e

P
a

r
i

s
2

0

A
dr

es
se

p
er

so
nn

el
le

3
B

d
G

a
u

s
s

7
5

0
0

6
P

a
r

i
s

T
él

.
:

0
1

-
0

0
-

1
2

-
3

4

A
dr

es
se

pr
of

es
si

on
ne

lle

I
n

s
t

i
t

u
t

d
e

m
a

t
h

é
m

a
t

i
q

u
e

s

U
n

i
v

e
r

s
i

t
é

d
e

P
a

r
i

s
2

0

3
r

u
e

L
a

p
l

a
c

e

7
5

0
2

0
P

a
r

i
s

F
r

a
n

c
e

T
él

.
:

0
1

-
0

0
-

0
0

-
0

0

F
ax

:
0

1
-

0
0

-
0

0
-

0
1

A
dr

es
se

él
ec

tr
on

iq
ue

:
i

x
e

@
m

a
t

h
.

p
a

r
i

s
2

0
.

f
r

A
dr

es
se

él
ec

tr
on

iq
ue

(p
ri

vé
e)

:
i

x
e

@
l

i
b

r
e

.
f

r

P
ag

e
W

eb
:

h
t

t
p

:
/

/
m

a
t

h
.

p
a

r
i

s
2

0
.

f
r

/
~

i
x

e

T
it

re
s

u
n

iv
er

si
ta

ir
e

fr
a

n
ça

is
3

:
v

o
ir

p
.

1
D

ip
lô

m
es

,
q

u
a

li
fi

ca
ti

o
n

s,
ti

tr
es

:
v

o
ir

p
.

2

T
ra

v
a

u
x

,
o

u
v

ra
g

es
,

a
rt

ic
le

s
,

ré
a

li
sa

ti
o

n
s4

:
v

o
ir

p
.

3

L
e

ca
n

d
id

a
t

d
év

el
o

p
p

er
a

à
la

su
it

e
so

n
cu

rr
ic

u
lu

m
v

it
æ

et
p

ré
ci

se
ra

n
o

ta
m

m
en

t
se

s
a

ct
iv

it
és

en
m

a
ti

èr
e

:

–
d’

en
se

ig
ne

m
en

t
(v

oi
r

p.
4

)
–

de
re

ch
er

ch
e

(v
oi

r
p.

5
)

–
d’

ad
m

in
is

tr
at

io
n

(v
oi

r
p.

6
)

F
ai

t
à

P
a

r
i

s
le

1
0

m
a

r
s

2
0

0
4

1
R

ay
er

le
s

m
en

ti
o

n
s

in
u

ti
le

s.
2

D
a

n
s

le
ca

s
o

ù
p

lu
si

eu
rs

em
p

lo
is

p
o

rt
a

n
t

le
m

êm
e

in
ti

tu
lé

(m
êm

es
se

ct
io

n
et

p
ro

fi
l)

so
n

t
p

u
b

li
és

d
a

n
s

le
m

êm
e

ét
a

b
li

ss
em

en
t,

la
d

em
a

n
d

e
es

t
ré

p
u

té
e

co
n

ce
rn

er
ch

a
cu

n
d

e
ce

s
em

p
lo

is
,

sa
u

f
en

ce
q

u
i

co
n

ce
rn

e
le

s
em

p
lo

is
a

ff
ec

té
s

à
d

es
in

st
it

u
ts

o
u

à
d

es
éc

o
le

s
fa

is
a

n
t

p
a

rt
ie

d
e

l’
u

n
iv

er
si

té
p

o
u

r
le

sq
u

el
s

il
co

n
v

ie
n

t
d

e
fa

ir
e

a
ct

e
d

e
ca

n
d

id
a

tu
re

sé
p

a
ré

m
en

t.
3

P
ré

ci
se

r
p

o
u

r
la

th
ès

e
:

le
ti

tr
e,

la
d

a
te

,
le

li
eu

d
e

so
u

te
n

a
n

ce
,

le
d

ir
ec

te
u

r
d

e
th

ès
e

et
le

ju
ry

.
4

N
u

m
ér

o
te

r
le

s
d

o
cu

m
en

ts
d

ev
a

n
t

fi
g

u
re

r
d

a
n

s
le

d
o

ss
ie

r
d

es
ra

p
p

o
rt

eu
rs

.

Figure 1: The two forms Annexe B and Annexe C.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET03

La machine à formulaires (The Forms’ Machine)
Antoine Lejay

123

form.tex

personal data
listuniv.tex

universities addresses

formul.sty

parsing mechanism
{annexeB,annexeC}.cls

content of the forms

LATEX

form.dvi (the forms)

Figure 2: The design of the MAF.

Although many word-processors allow to do such a thing, TEX is probably
the best candidate to satisfy point (d) while it does not take too much time
to write some code satisfying the other requirements.

The design of the MAF is the following: (a) The candidate enters in a
single file (form.tex) both personal informations (name, address, ...) and
the list of positions she/he plans to apply. We use the functionalities of the
D. Carliste’s keyval package [3] in order to have a simple and clear syntax.
(b) The class used in form.tex specifies the form to be produced: a single
compilation of form.tex with the class annexeC.cls produces all the first
pages of the curriculum vitæ for all the positions. (c) All the class files call
the style file formul.sty whose goal is to parse form.tex, while the class
file is devoted to the presentation of the form. Thus, it is rather easy to
write or change a class file, while formul.sty contains more complex code
(not to speak of keyval.sty). (d) The complete names and addresses of
the universities are available in the separate file listuniv.tex, so that the
candidate does not lose time in entering these informations.

As such, there are three layers: the front-end user, even if a complete
beginner, has only to enter the informations in form.tex. If she/he is not
satisfied by the output (which tries to be faithful to the given models, but
which is not aesthetic), an average LATEX user may rather easily change the
class files or create new ones simply by playing with boxes, spaces and springs,
since the parsing and sometimes tricky job is done in formul.sty3.

3This style file also provides also some macros for formatting lists and other typesetting
issues.

WET03 Preprints EuroTEX2005 – Pont-à-Mousson, France

124 La machine à formulaires (The Forms’ Machine)
Antoine Lejay

4 The structure of the files

The end-user has only to change or complete the file form.tex that begins
with

\documentclass{annexeB}

%\documentclass{annexeC}

\input{listeuniv}

\begin{document}

Here, the user chooses which form to produce by commenting and decom-
menting the first lines. Then, she/he enters some personal informations
(name, address, ...), using key-values syntax.

\candidat{

MMmeMlle={M},

nom={Doe},

prenom={John},

...}

In order to avoid repetitions (and mistakes), some default informations can
be entered with the command \postedefaut. For example, a Ph.D. holder
in pure mathematics generally applies to positions in the research domain
labelled by the number 25. Thus, there is no need to repeat this information,
which is then entered as a value for the key sect. The key mdcouprof accepts
mdc (for positions of assistant professor) or prof (for positions of professor).

\postedefaut{

mdcouprof={mdc},

sect={25},

type={recrutement},

dateJO={27 f\’evrier 2004},

articleJO={26I-1}

}

Here, the other informations specify in some sense the statut the applicant:
for example, the recruitment procedure is also valid for people already having
a job as (assistant) professor but willing to go elsewhere. It may also happen
that some positions, although rare, are opened only to a restricted category
of people.

The file ends by a list of commands \postes, one for each position, whith
two mandatory arguments (the number of the position and the “tag-name”
of the university. This “tag-name” is defined in the file listuniv.tex but it

Preprints EuroTEX2005 – Pont-à-Mousson, France WET03

La machine à formulaires (The Forms’ Machine)
Antoine Lejay

125

is easily deduced from the real name of the university). Some optional argu-
ments, again with the key-value syntax, may be used to give more precision
about the position or to override the arguments used by default.

\poste[

sect={26},

profil={statistiques}

]{1012}{aix-marseille1}

The file listuniv.tex contains the list of all the Universities with their
addresses, under the form (this list, with 91 entries, was established from
the informations given in the WEB site of the french Department of Educa-
tion [4]):

\defuniv{aix-marseille1}{

nom={Universit\’e de Provence~: Aix-Marseille I},

academie={\dapostrophe Aix-Marseille},

adresse={3, place Victor Hugo\\

13331 MARSEILLE CEDEX 3 }

}

The command \dapostrophe may be used to write “d’Aix-Marseille” (lit-
erally “from Aix-Marseille”) or “Aix-Marseille” in function of the context.
Thus, in the last call of the command \poste above, the tag-name aix-marseille1
means that the full name, address, ... of the corresponding entry in listuniv.tex

will be used. These data are stored in TEX’s memory using a \csname/\endcsname’s
scheme.

When compiling the file form.tex with LATEX, the appropriate class file
will be called. Every class file shall have the following structure:

\LoadClass[11pt]{article}

\RequirePackage{formul}

\newcommand{\codeposte}{

...

}

The package formul.sty contains the parser. The informations on the can-
didate are transformed into some commands. For example, the name of the
candidates is defined as the expansion of the command \nom, ... The com-
mand \codeposte is called each time the command \poste is encountered
in the file form.tex. Its effect is to typeset and fill the form with the spe-
cific informations on the position. The file formul.sty also contains some
commands regarding typesetting (lists manipulations, ...), so that new class
files can be easily created.

WET03 Preprints EuroTEX2005 – Pont-à-Mousson, France

126 La machine à formulaires (The Forms’ Machine)
Antoine Lejay

5 Conclusion

The first version was released in 2001 and its seems that many candidates
enjoyed it (I have absolutely no statistics at all, but I have received some
very enthusiastic emails), since it allows them to concentrate on the content
of the curriculum vitæ and not on writing boring, repetitive informations.

Using TEX for this task is advantageous since only one version needs to
be maintained due to its computer-independent design. Besides, the MAF
is easily installed, adapted if needed and the end-user does not need any
specific skills or knowledge of a particular software. Finally we use the fact
that the TEX language allows to mix both data processing and typesetting
issues, maybe in a more complex way than usual word-processors and this is
essential for the automatic production of forms.

Acknowledgment. I wish to thank all the people who have contributed to the MAF
and proposed some extensions and corrections. Moreover, E. Schost and T. Zell have
suggested some corrections to this article. Finally, I was glad to have benefited from the
informations given on the WEB sites — maintained by volunteers — of the Guilde des
doctorants and Opération Postes while looking for a job.

References

[1] AMS coversheet <http://wwww.ams.org/coversheet>.

[2] Guilde des doctorants <http://guilde.jeunes-chercheurs.org/>.

[3] D. Carliste. keyval.dtx, part of the graphic bundle.

[4] Ministère de l’Éducation Nationale (France) <http://wwww.education.

gouv.fr>.

[5] Opération Postes <http://smai2.emath.fr/postes>.

Author’s address:
Antoine Lejay
Projet OMEGA
Institut National de Recherche en Informatique et Automatique (INRIA)
& Institut Élie Cartan de Nancy (IECN)
Campus scientifique
BP 239
54506 Vandœuvre-lès-Nancy cedex, France
<Antoine.Lejay@iecn.u-nancy.fr>.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET03

La machine à formulaires (The Forms’ Machine)
Antoine Lejay

127

ŞäferTEX: Source Code Esthetics for Automated Typesetters

Frank-Rene Schaefer
(private research)

<frank r schaefer@gmx.net>

February 26, 2005

Abstract

In 2003, the first attempts towards ŞäferTEX were made, targeting to create a text processing with the
goal of optimizing its ease of use, i.e. the beauty of its code appearance. The macro based TEX system still
lives in niches of typesetting experts, computer scientist, and engineers who are willing to learn the overhead
required to use the system - for the sake of high quality typesetting. ŞäferTEX faced the challenge to provide
an interface language that does only differ minimally from a normal human edited text, while the compiler
itself extracts the commands it requires.

Despite to simple wrappers programs, ŞäferTEX is a real three phases compiler, consisting of a lexical
analyzer, a parser, and a code generator. In the last year the system mainly underwent internal changes that
allowed to maintain this structure, while allowing a rather unusually simple and transparent programming
syntax. As a consequence, the system now reached a robustness, so that it can be used by a wider audience.

This presentation shall give the reader an overview over the system of ŞäferTEX and demonstrate its
abilities with a example application. Also, the fundamental ideas which allowed to maintain the classical three
phases compiler structure are introduced. With the start of this conference the system can be downloaded
at safertex.sourceforge.net.

WET04 Preprints EuroTEX2005 – Pont-à-Mousson, France

128 ŞäferTEX: Source Code Esthetics for Automated Typesetters
Frank-René Schäfer

The TEX Wrapper Structure:

a basic TEX document model

implemented in iTEXMac

Jérôme Laurens

November 5, 2004

1 Introduction

This presentation primarily concerns the high level user interface of the TEX
typesetting system. In general, people find it difficult to work with TEX due
to the powerful syntax, numerous auxiliary files created or managed, and the
user interface that has very little in common with standard word processors.
Moreover, sharing TEX documents with colleagues is often delicate as soon as
some non standard LATEX is involved or, more frequently, there are some signif-
icant differences in the computer configurations. The purpose of this article is
to lay the foundation for the TEX Wrapper Structure, which aims to help the
user solve this kind of problems.

We first explain what could be the desiderata for a TEX document object
model, then we give a precise description of the TEX Wrapper Structure, dis-
cussing the various solutions and the final choice. Finally, the concrete imple-
mentation used by iTEXMac1 demonstrates an example of user interface.

An appendix briefly presents the latest developments concerning PDF syn-
chronization which is a MacOS X specific feature of great interest for the whole
TEX community.

2 A TeX Document Model

2.1 De facto document model

A document model aims to describe the storage and use of a certain kind of
data: a simple document model might be a linear text, which is an ordered list
of 8 bit numbers following the ASCII rules and stored in one flat file. More
complex document structures are used either to describe data contents, for
example Adobe’s Portable Document Format, or to store them, for example old

1iTEXMac, one of the open source TEX front-ends on MacOS X, was presented during
EuroTEX 2003 and TUG2004. Further information at http://itexmac.sourceforge.net

Preprints EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

129

MacOS operating sytemes use a hierearchical file system with resource forks to
allow file to store structured data. Regarding these two points among others,
TEX is very specific mainly because it does not pose a priori any document
model, letting the end user use its own de facto model. The question is to
identify what core structure should have a TEX document model, that should
be shared by quite all documents including the ones already existing.

Actually, a self contained TEX document is a series of files gathering data
as various as images, linear text, formatted text, macro packages (LATEX style),
code libraries (libjpeg...), engines (TEX, MetaPost) and their calling options. Of
course this makes really huge documents, such that common parts are naturally
eliminated, hoping that they will be available everywhere and every time one
will ever need them. This results in some kind of weak TEX document model
which has proved to be efficient, except in some rare situations where the syntax
was broken by some package update, and less rare ones where engine options
have been forgotten... Far-sighted TEX users carefully keep the various log files
coming from typesetting because of the versioning information they contain.
It is extremely helpful when fixing update problems, but still relies on non
negligible human expertise where one could reasonably expect full computer
assistance. When a strategy is available to record version information, it will
be added to the TEX Wrapper Structure.

Generally speaking, a TEX document is composed of different kind of graph-
ical objects, from linear text to pictures, possibly splitted into different files.
There is no real problem concerning the various graphical data formats but the
same does not hold for TEX source files. Any TEX user knows that a source
document is not correct as long as it has not successfully passed TEX digestive
process. More experienced users are perfectly aware of the problems that can
appear when using certain combinations of macro packages. All this makes the
data part of a TEX Document Model very difficult to define a priori in a com-
plete and explicit description. This design, being as open as possible, is a real
advantage because it provides quite unlimited document types. But at the same
time, it does not take into account the document preparation stage and does not
provide any help to the user in his real life struggle for document elaboration.

2.2 The meta information

For that purpose, advanced TEX dedicated editors have designed their proper
strategy to assist the user with extraneous information not really necessary but
missing when absent: the meta information. For example syntax attributes
highlighting (marking TEX tokens, comments and other stuff with special col-
ors) is a clever use of the information actually available as is in a source file. This
can be improved by some syntax checking, that could mark bad commands just
like the spell checker marks the misspelled words. For this to work efficiently in
a real time context, we must collect the macros defined in the context and cache
the whole dictionary list to improve access. Similarly, parsing the document
contents for sectioning commands provides the user with a map that improves
the overall sight and the navigation inside the document. All this is more or

WET05 Preprints EuroTEX2005 – Pont-à-Mousson, France

130 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

less filtering or interpreting the existing information to make it more accessible.
Moreover, editors are free to add their own information if they think it is rele-
vant. We can see that in fact, real TEX users may need more information that
actually available in a TEX document, and TEX does not care about this kind of
meta information. The TEX Wrapper Structure will mainly consider this point.

2.3 The document storage

As we must preserve actual TEX documents in a backward compatibility issue,
we are only concerned with the document storage, more precisely the location
where the different files are stored. Some of them must be located in definite
folders, according to the TEX environment (in general following the TEX Direc-
tory Structure rules), while the user is absolutely free to name others. For them,
some weak naming rules could help in their organization, without limiting their
use. For example, people generally gather their graphic files in folders named
images, graphics, pictures or whatsoever but there is not yet a widely spread
strategy to become part of a TEX document model. Moreover, we must admit
the use of different naming strategies to best fit the numerous situations one can
imagine, for example, a unique image directory is certainly not advisable when
the document is expected to contain thousands of logically organized images.
Finally, the only naming rules we can safely state concerns the meta information
and will be addressed by the TEX Wrapper Structure.

3 The TEX Wrapper Structure

We define the core TEX Wrapper Structure gathering information useful to
any editor or utility, then we detail the TEX project concept and we briefly
describe the concrete implementation developed in iTEXMac. This is a weak
TEX document model given through a series of compliance rules, only assuming
an underlying hierarchical file system. We also assume that all the document
files but the standard macro packages are collected in one enclosing directory,
but a priori different documents can share the same directory.

3.1 The core TEX Wrapper Structure

The only purpose of the core structure is to separate the document data, which
is necessary, from the meta information, which is supplemental. Actually, the
meta information is stored either in the very TEX source file (for example the
%& first line trick to code for the format, the first commented line for TEXexec,
emacs local variables to code for the string encoding, AucTEX local variables
in the file trailer), or an external file (the .aux LATEX file, the Auto/ directory
where AucTEX caches its style attributes, the TEXniCenter projects) and each
tool defines its own strategy without really taking care of one another. It is not
yet the point to define a unique and complete set of meta information, but we
are concerned with the storage location of the meta information. For practical

Preprints EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

131

reasons, it appears that some information such like the string encoding and
the language should live near the document they are referring to, but other
information including the list of project files and the root document identifier
should live in a shared data base. If we consider all the tools of the TEX
typesetting system, the simplest solution from the user point of view, is to collect
the whole meta information into one central dedicated location. That way, no
more meaningful comment will pollute the TEX source thus preserving the meta
information from hazardous manipulations and preventing an innocuous TEX
comment to become suddenly active while a utility has silently put some implicit
information in it.

Finally, I strongly recommend not to use TEX comments anymore for any-
thing else that commenting, except when conforming to a publicly available and
widely accepted syntax rule.

3.2 The TEX project paradigm

With emacs’ AucTEX mode and TEXniCenter we already mentioned, the old
DirectTEX pro is another example of editor that stores meta information in an
external file. We propose to collect this information in one dedicated directory.
So, a TEX project is just a directory named document.texp (“texp” stands for
TEX Project) where shared or private meta information should be stored. The
possible interference with already existing TEX documents is quite void because
the texp extension is not yet used, this ensures a full backward compatibility.

To define the mapping linking projects to files, the TEX project is expected to
maintain a list, either explicit or implicit, of all the files it is meant to manage.
But conversely, it is not strictly necessary for the TEX source files to know
the project they belong to (as for AucTEX) because this information can be
retrieved easily if we impose that TEX projects only manage files at the same
level of below themselves in the file system hierarchy. Then, given a file path,
we just have to scan the file hierarchy up to the root for TEX projects and only
keep the appropriate ones.

The contents of the TEX project directory document.texp is described in
the sequel. The user is not expected to view nor edit this data, so the format
primarily concerns the programmers. More precisely, it is a balance between a
flat XML file and an atomic directory structure, both suitable for information
hierarchically organized. The “/” character is used as path separator.

• document.texp/Info.plist is an XML property list for a general purpose
meta information wrapped in an info dictionary described in table 1 and
subsequent tables. This is optional.

We make use of the XML property list data format storage as publicly
available at

http://www.apple.com/DTDs/PropertyList-1.0.dtd

WET05 Preprints EuroTEX2005 – Pont-à-Mousson, France

132 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

Key Class Contents
isa String Required with value: info
version Number Not yet used but reserved
files Dictionary The paths of the files involved in the

project wrapped in a files dictionary de-
scribed in table 2. It is an indirection table
suitable for file name management. Op-
tional.

properties Dictionary Attributes of the above files wrapped in a
properties dictionary described in table
3, this is were string encoding and spelling
key are recorded. Optional.

main String The fileKey of the main file, if relevant,
where fileKey is one of the keys of the
files dictionary. The main file is the one
to be typeset or processed. Optional.

Table 1: info dictionary description where the TEX project maintains the list
of known files, their properties and the main file identifier.

Key Class Contents
fileKey String The path of the file identified by the string

fileKey, relative to the directory containing
the TEX project. Each file key is unique.
While the file name is subject to changes,
the file key will never change: the latter is a
strongly reliable file identifier. In general,
no two different keys should correspond to
the same path.

Table 2: files dictionary description: an indirection table particularly suitable
for file name management.

It is indeed MacOS X centric but two PERL modules are available on CPAN
to parse such XML files: Mac-PropertyList2 andMac-PropertyListFilter3.
Moreover, this can be changed in forthcoming versions without causing
any harm from the user point of view.

• document.texp/frontends A directory dedicated to front-ends where they
store private meta information.

• document.texp/frontends/name A private file or directory dedicated to
2http://search.cpan.org/~bdfoy/Mac-PropertyList-0.9/
3http://search.cpan.org/~jgoff/Mac-PropertyListFilter-0.02/

Preprints EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

133

Key Class Contents
fileKey Dictionary Language, encoding, spelling informa-

tion and other attributes wrapped in an
attributes dictionary described in table
4. fileKey is one of the keys of the files
dictionary.

Table 3: properties dictionary description: to each key identifying a file is
associated a dictionary of attributes.

Key Class Contents
isa String Required with value: attributes
version Number Not yet used but reserved
language String According to latest ISO 639. Optional.
codeset String According to ISO 3166 and the IANA As-

signed Character Set Names. If absent
the standard C++ locale library module
is used to retrieve the codeset from the
language. Optional.

eol String When non void and consistent, the string
used as end of line marker. Optional.

spelling String One of the spellingKeys meaning
that the property list at document.
texp/spellingKeys.spelling contains the
list of known words of the present file
wrapped in a spelling dictionary described
in table 5. Optional.

Table 4: attributes dictionary description

Key Class Contents
isa String Required with value: spelling
version Number Not yet used but reserved
words Array The array of known words

Table 5: spelling dictionary description for the list of known words.

the front-end identified by name. The further contents definition is left
under the front-end responsibility. The directory at

document.texp/frontends/iTeXMac

is reserved for iTEXMac private use, maybe AucTEX can move its Auto/

WET05 Preprints EuroTEX2005 – Pont-à-Mousson, France

134 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

directory into

document.texp/frontends/AucTeX

and TEXniCenter can use

document.texp/frontends/TeXniCenter.

This cooperative design is based on a strong separation of private meta
informations from each other front-end, it prevents corruption and allows
better recovery in case of error. Moreover, synchronization problems that
may appear when two different utilities access the same flat file do not
occur.

• document.texp/users is a directory dedicated to users and should not
contain any front-end specific data. This is optional and reserved for
further user.

• document.texp/users/name is a directory dedicated to the user identified
by name (not its login name). Not yet defined, but private and preferably
crypted.

• document.texp/spellingKey.spelling is an XML property list for lists of
known words wrapped in a spelling dictionary defined in table 5 and
uniquely identified by spellingKey. This format is stronger than a simple
comma separated list of words. This is optional.

We assume that a text document is multilingual and can have different
spelling contexts, all of them being defined by a language with a dictionary
and a list of known words. At this time, MacOS X programming interface
does not allow to have more than one spelling context per open file, and
the same might hold for other operating systems. So, each file is expected
to have only one spelling context defined by a language and a spelling key,
both defined in the properties dictionary (see the description in table
3). Then, a multilingual document will be splitted into files according to
the language and the list of known words.

Notice that there is no pre definite correlation between a language and
a list of known words. And this design is certainly not the best we can
elaborate, but it appears to be sufficiently efficient.

3.3 The TEX Wrapper Structure implemented in iTEXMac

The graphical user interface developed in iTEXMac takes benefit of the TEX
Wrapper Structure. Private informations are cached to improve the user expe-
rience: window size and positions recording are the classical examples. Also,
meta information about the engine and options used to typeset the document

Preprints EuroTEX2005 – Pont-à-Mousson, France WET05

The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

135

are stored, they are used to launch the appropriate utility with appropriate ar-
guments assuming a teTEX like distribution is available. This should be shared
once the latest TEX live is well established.

Technically, iTEXMac uses a set of private, built-in shell scripts to typeset
documents. If this is not suitable, customized ones are used instead, possibly
on a per document basis, but no warning is given then. No security problem
has been reported yet, most certainly because such documents are not shared.

Notice that iTEXMac declares both texp and texd as document wrapper
extensions to MacOS X, which means that document.texp and document.texd
folders are seen by other applications just like other single file documents, their
contents being hidden at first glance. Using another file extension for the TEX
document will prevent this MacOS X feature without losing the benefit of the
TEX Wrapper Structure and its TEX project.

4 Appendix: The pdfsync Feature

During the document preparation using the TEX typesetting system, the cor-
respondence between the output and the original description code in the input
is of frequent use, unfortunately it is not straightforward. Some commercial
TEX frontends (Visual TEX

4 and TEXtures5) introduced a workaround. Then
LATEX users could access the same features with a less-efficient implementation
through the use of srcltx.sty, which added source specials in the DVI file.
The command line option -src-specials now delegates that task to the TEX
typesetting engine.

iTEXMac fully supports this synchronization allowing to jump from the DVI
file to the .tex source and back. Moreover, Piero d’Ancona and the author have
extended this feature from the .tex to the .pdf output. While typesetting a
document.tex file with LATEX for example, the pdfsync package writes extra ge-
ometry information in an auxiliary file named document.pdfsync, subsequently
used by the front ends to link line numbers in source documents with locations
in pages of output PDF documents. iTEXMac, TEXShop6 and TEXniscope7 both
support pdfsync.

The official pdfsync web site where file specifications and more complete
explanations will be found at:

http://iTeXMac.sourceforge.net/pdfsync.html

Unfortunately, the various pdfsync files for Plain, LATEX or ConTEXt are not
completely safe. Some compatibility problems with existing macro packages
may occur. Moreover, sometimes pdfsync actually influences the final layout;
in a case like that, it should only be used in the document preparation stage.

Notice that the pdfsync approach is different from Heiko Oberdiek’s vpe.sty.

4http://www.micropress-inc.com/
5http://www.bluesky.com/
6http://www.uoregon.edu/~koch/texshop
7http://docenti.ing.unipi.it/~d9615/homepage/mac.html

WET05 Preprints EuroTEX2005 – Pont-à-Mousson, France

136 The TEX Wrapper Structure: A Basic TEX Document Model Implemented in iTEXMac
Jérôme Laurens

Case Study of TEX in Commercial Data Based
Publishing: Completely Automatic Typesetting of a Large

Product Catalogue

Stephan Lehmke
QuinScape GmbH, Thomasstraße 1, 44135 Dortmund, Germany

Stephan.Lehmke@QuinScape.de
http://www.QuinScape.de

February 25, 2005

Abstract

In the talk, a data based publishing system for large product catalogues using pdflatex
is presented which was developed to provide

1. top-quality typography;

2. completely automated document generation;

3. high flexibility for specifying data-based, design-oriented layouts;

4. multi-language support;

5. efficient production of very high volumes (number of documents, number of pages).

While some of the features (typographic excellence, multi-language support, support
for high volumes) are provided by pdflatex ‘out of the box’ and at most require appro-
priate tweaking of TEX’s parameters, to provide the optimal combination of completely
automated document generation and high flexibility for document design and specifica-
tion, a dedicated system consisting of several macro packages and document classes was
created.

The process of designing and producing a 650 page product catalogue typeset in 14
languages is described in detail.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET06

Case Study of TEX in Commercial Data Based Publishing: Completely Automatic Typesetting of a Large
Product Catalogue
Stephan Lehmke

137

The bigfoot bundle for critical editions∗

David Kastrup†

February 27, 2005

Abstract

The LATEX package bigfoot and supporting packages
solve many of today’s problems occurring in the con-
texts of single and multiple blocks of footnotes, and
more. The main application is with philological works
and publications, but simpler problems can be solved
painlessly as well without exercising all of the pack-
age’s complexities. For other problems not yet tackled
in this area, a solid framework is provided.

1 Introduction

Footnotes in TEX are a problematic area. One reason
is that TEX’s insertion mechanism is far too basic to
cope with more complicated usage patterns. Insertions
are not subjected to the usual optimization methods of
TEX, but instead are fitted on the page with a greedy
algorithm at the time they are encountered. At that
time, they may also be split or floated to the next page.
A split does not take into account any mandatory fol-
lowing material on the vertical list: infinite values of
\widowpenalty coupled with footnotes anchored in the
next to last line will not be split at the correct point,
and thus will have to get moved over to the next page.

Another deficiency is that when splitting a footnote,
shrinkability is considered by TEX while doing the split,
fitting more material on the page. However, at the time
of the page break decision, the information about the
shrinkability used for the insertion split gets lost, and
consequently the page can appear overfull.

Since TEX does not even get the cases right for which
it was designed, more complicated footnote schemes
like those for critical editions have to be implemented
mostly manually.

The bigfoot addresses a number of deficiencies and
replaces the normal footnote mechanism.

2 Features

So what are the features that bigfoot provides?

∗and a lot of other footnote applications
†dak@gnu.org

• Multiple footnote apparatus1 are possible.2

• Footnotes can be nested.3

• Footnotes are numbered in the order they appear
on the page, and numbering may start from 1†

on each page. In each apparatus, the footnotes
are arranged in numerical order identical to page
order. This does not sound exciting at all until
you consider the implications of footnotes being
nested: if the main text has some footnote4 and
then the publisher comments the main text with a
footnote,a the logical order of footnotes (in which
they appear in the source text) would have been
to let footnote e appear before footnote a. The
footnotes instead will be reordered to page order.5

• Footnotes may contain \verbatim commands6

and similar, and they will just work as expected.
This is achieved in a manner similar to the
\footnote command of plain TEX.

• Footnotes can be broken across pages.7

1 An apparatus is one block of contiguous footnotes forming
a logical and physical unit. Separate apparatusb can be inde-
pendently broken to the next page.

2 Actually, manyfoot already provides this functionalityc but
it fails to address a number of intricacies inherent to this sort of
setup, a few of which follow.

3 You can anchor footnotes for some apparatus in the main
textd.

† or whatever the first footnote symbol happened to be
4 such as shown in this example footnotee
5 The style file perpage has been extended with additional

functionality for reordering such numbers.
6 even stuff like \verb-\iffalse-
7 While this does not sound like something excitingly new, it

must be noted that TEX does not do a satisfactory job at split-
ting insertions, the underlying mechanism for split footnotes. In
particular, TEX only manages to find a split when no mater-
ial whatsoever is added to the page after the occurence of the
split footnote. This might include another footnote in a differ-
ent apparatus, or simply a line tied to the current line with an
infinite penalty, for example because of a respective setting of
\widowpenalty. In contrast, bigfoot breaks footnotes properly
in such circumstances, and it uses a backtracking algorithm (with

a This is a subsequent comment to the main text. b Yes,
this is the correct plural form. c and is loaded by bigfoot

d or any apparatus preceding it on the page
e which happens to have a comment attached to it. Notice

that bigfoot will prefer to leave this smaller footnote block in-
tact, as breaking it will not help fitting the above footnote block
on the page.

WET07 Preprints EuroTEX2005 – Pont-à-Mousson, France

138 The Bigfoot Bundle for Critical Editions
David Kastrup

• When footnotes are broken across pages, the color
stack is maintained properly. Color is handled in
LATEX with the help of specials that switch the
color (and, in the case of dvips, restoring it after-
wards with the help of a color stack). Restarting
the footnote on the next page with the proper color
is something that has never worked in LATEX. Now
it simply does.

• Footnotes may be set in a compact form in one
running paragraph.8

• Split footnotes will not get jumbled in the presence
of floats. bigfoot is not afflicted by this bug in
LATEX’s output routine since it does not delegate
the task of splitting footnotes to TEX in the first
place. While the faulty output routine of LATEX
may still jumble the order of footnotes in that par-

early pruning of branches that can’t beat the current optimum)
for finding the best split positions for several footnote appara-
tus in parallel. The fill level of the page is taken into account as
well as the costs of the individual splits. A split footnote is pe-
nalized with a penalty of 10000 (which is pretty similar to what
TEX itself does when dealing with footnotes), so that in gen-
eral TEX will tend to avoid splitting more than a single footnote
whenever possible. One complication is that if the parts broken
to the next page contain footnotes themselves, those have to be
moved to the next page completely and adapted to the number-
ing of footnotes therea. This rather intricate and complicated
mechanism leads to results that look simple and natural.

8 While manyfoot and fnpara also offer this arrangement,
bigfoot offers a superior solution in several respects:

• The line breaking can be chosen much more flexibly: with
appropriate customization, it is possible to fine-tune quite
well when and where stuff will be placed in the same line,
and when starting a new line will be preferred.

• In-paragraph footnotes can be broken across pages auto-
matically, just like normal footnotes. They will only be
broken after the last footnote in the block has started.

• Pages will not become over- or underfull because of mis-
estimating of the size of in-paragraph footnotes. Also the
total width of such footnotes is not restricted to \maxdimen

(which sounds generous at something like 6m or 19 ft, un-
til you realize that a few pages of text suffice to burst that
limit, and a few pages of text are reached easily with longer
variants of the main text). While TEX will accumulate
boxes exceeding this size without problem, it panics at its
own audacity if you actually ask about the total width of
the acquired material. While one may still not have mater-
ial exceeding a total vertical size of \maxdimen accumulate
in one footnote block, one would usually need a few dozen
pages for that, and so this limitation is much less noisome
than the corresponding restriction on the horizontal size.

• The decision of whether to make a footnote in-paragraph or
standalone can be changed for each footnote apparatus at
any time, including on mid-page. In fact, you can make this
decision for each footnote separately. Since display math
requires vertical mode footnotes, this is convenient.

• bigfoot will make a good-faith effort to adapt the normal
footnote layout provided by the document class with the
\@makefnmark and \@makefntext macros to in-paragraph
footnotes.

a which can be completely different!

ticular case (when one footnote gets held over as
an insertion ‘floated’ at infinite cost), bigfoot will
sort the jumbled footnotes back into order before
processing them.

• Each footnote apparatus can have its own private
variant of \@makefntext and a few other macros
and parameters responsible for formatting a foot-
note block. The default is to use what the class
provides, but special versions can be defined, for
example,

\FootnoteSpecific{variants}%
\long\def\@makefntext#1{...

for the footnote block called “variants”.

3 Drawbacks

What about current drawbacks?

• ε-TEX is used throughout. After it became clear
that the implementation of the package would not
be possible without using some of ε-TEX’s features,
its features were extensively employed: rewriting
the package to get along without ε-TEX would be
very hard, even if you came up with ideas for
those cases where I could find no other solution.
Free TEX distributions have come with ε-TEX for
a long time by now (in fact, ε-TEX is now the rec-
ommended engine for LATEX, and actually used as
the default in the latest TEX Live), but proprietary
variants may lack ε-TEX support. The same holds
for quite a few Ω versions.

• The licence is not the LPPL, but the GPL. In my
book, I consider this an advantage: the functional-
ity of the package is quite important, and it is in its
infancy yet. I would not like to encourage a market
of proprietary offsprings directly competing with
it. While with sufficient financial incentive I might
feel confident enough to have the means to reim-
plement whatever noteworthy extension somebody
else might come up with, at the current time I pre-
fer this way of ensuring that the free development
does not fall behind and that there is no incen-
tive to turn to developers with no qualms about
creating proprietary versions.

• bigfoot requires twice as many box registers9 as
manyfoot: one set in the form of an insertion for
each footnote apparatus, one set as mere boxes.

• It can’t handle more footnotes in a single block
per page than the group nesting limit of TEX, and

9 Since ε-TEX has an ample supply of box registers (32767
instead of 256), this is not really much of an additional limitation.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET07

The Bigfoot Bundle for Critical Editions
David Kastrup

139

that is usually hardwired at 255.†

• Since it meddles considerably with the output rou-
tine’s workings, interoperation with other pack-
ages doing the same might be problematic. Con-
siderable effort has been spent on minimizing pos-
sibly bad interactions, but the results might not
always be satisfactory and, at the very least, might
depend on the load order of packages.

• It slows things down. This is not much of a con-
cern, and usually the package is astonishingly fast.

• The complexity of the package makes it more likely
for things to go wrong in new ways.10

4 Additional new packages

The bundle provides some more packages: perpage is
used for the sort of renumbering games mentioned be-
fore, and suffix is used for defining augmented com-
mands.

As an example of use for those packages we had pre-
viously a few examples where numbers like 7‡ and 255§

were given footnotes, and in order not to confuse this
with powers as the following 66611 is in danger of, we
have switched to per-page numbering of footnotes with
symbols for that purpose. The source code simply uses

like~7\footnote’{a lucky number}

namely a variant footnote command. How is that
achieved? Just with

\newcounter{footalt}
\def\thefootalt{\fnsymbol{footalt}}
\MakeSortedPerPage[2]{footalt}
\WithSuffix\def\footnotedefault’{%
\refstepcounter{footalt}%
\Footnote{\thefootalt}}

A new counter is created, its printed representation is
set to footnote symbols, the counter is made to start
from 2 on each page (since symbol 1¶ is a bit ugly), and
then a variant of \footnotedefault is defined which
will step the given counter and use it as a footnote
mark.12

If you find yourself running out of insertions, etex offers the
\reserveinserts command.

† This limit seems sufficient at first glance, but one could
use the various mechanisms available in connection with in-para-
graph footnotes to make sure that a footnote will be broken
across the page at a point closely related to the main text’s break-
point (for example, if you are doing an interlinear translation in
a footnote). In that case, this limit might become problematic.

10 Most of those problems should arise under requirements
that could not possibly be met without the package, so this would
be reason for improving rather than not using the package.

‡ a lucky number § well, almost as lucky
11 strange, yes? ¶ which is ∗
12 manyfoot defines a two-argument command \Footnote that

That’s all. One can define several suffixes, the result-
ing commands are robust13, and one can use arguments
and other stuff. For example,

\WithSuffix\long\def\footnotedefault
[#1]{#2}{...

would augment the macro \footnotedefault by a
variant accepting an optional argument.

5 Some internals

5.1 Basic operation

The package uses most of the interfaces of manyfoot
for its operation. While it uses TEX’s insertions for
managing the page content, the material collected in
those insertions is in a pretty raw state and its size is
always overestimated.14 The actual material that goes
onto the finished page is generated from the insertions
at \output time.

Material that is put into insertions is prewrapped
into boxes without intervening glue.15 The box dimen-
sions are also somewhat special: while the total height
(height+depth) corresponds to the actual size of the
footnote, the depth contains a unique id that identifies
the last footnote in each box (of which there usually is
just one, unless we are dealing with the remnants of an
in-paragraph footnote apparatus broken across pages).
The width is set to a sort key that is used for rearrang-
ing the various footnotes into an order corresponding
to their order of appearance on the page.

The boxes are sorted by unvboxing them and then
calling the comparatively simple sorting routine (a
straight insertion sort):

\def\FN@sortlist{{%
\setbox\z@\lastbox
\ifvoid\z@ \else
\FN@sortlist \FN@sortlistii

\fi}}

\def\FN@sortlistii{%
\setbox\tw@\lastbox
\ifvoid\tw@\else
\ifdim\wd\tw@<\wd\z@
{\FN@sortlistii}%

\fi
\nointerlineskip \box\tw@

\fi
\nointerlineskip \box\z@}

takes a footnote mark and corresponding footnote text.
13 as long as their suffixes are so as well
14 bigfoot simply sets each footnote, even those that should

be typeset with others in one block, separately in its own para-
graph for estimating its size, which should be a safe upper limit
for the size a footnote can take when set in a paragraph with
others.

15 That way, there is never a legal breakpoint in an insertion.

WET07 Preprints EuroTEX2005 – Pont-à-Mousson, France

140 The Bigfoot Bundle for Critical Editions
David Kastrup

and then all consecutive runs of hboxes are joined into
vboxes. The desirability of breaking between two in-
paragraph footnotes depends on their respective size,
on whether this would save lines when typesetting, on
whether a footnote apparatus can be shrunk by more
than a certain factor in this manner, and whether the
ratio of allowable joints between footnotes16 to the
number of footnotes exceeds a certain ratio.17 The cri-
teria are configurable per apparatus or globally.

There are some footnotes where a vertical arrange-
ment is mandatory,18 and the footnote must not be set
into a hbox to start with. This is the case, for exam-
ple, for footnotes containing display math. Placing a
+ sign before the opening brace of the footnote text
will achieve that, and similarly a - sign can be used for
switching in an otherwise vertically arranged footnote
apparatus to horizontal arrangement.
bigfoot hooks into the output routine and does its

accounting work before the main output routine gets
a chance to get called. This work involves sorting the
various contributions to a single insertion, joining to-
gether all in-paragraph footnotes into a single para-
graph, measuring the resulting boxes, and gathering
more material from the page in case that this produces
an underfull box. Since the insertions bigfoot uses
are unsplittable, this will often lead to an overfull box.
In that case, the various footnote blocks get split to an
optimum size before the real output routine gets called,
and if this results in an underfull box again, more ma-
terial gets called in again.

5.2 Dissecting \@makefntext

The footnote layout of document classes is given by
\@makefntext. This macro receives one argument,
the body of the footnote. We’ll now discuss several
problems we want to tackle in the context of using
\@makefntext for implementing the layout prescribed
by the class file.

5.2.1 Robust footnotes

One problem with LATEX’s footnotes is that they scan
their arguments prematurely. We want them to be-
have more like those of plain TEX, to forestall com-
plaints when \verb and its catcode mongering cousins
fail to work in footnotes. The trick is to have the

16 where both footnotes around the breakpoint are considered
potentially horizontal material

17 A footnote apparatus in which there are just few horizon-
tally arranged footnotes would appear inconsistent.

18 like footnotes containing

• list environments

• display math like

∞∑
n=1

(−1)n

n
= log

1

2

macro argument of the \footnote macro not really
be a macro argument, but the content of an \hbox or
\vbox command, and have subsequent code do its work
with \aftergroup, once the command finishes.

This means that we have to cut \@makefntext into
parts before and after its argument. It turns out that
cutting the part before it starts processing its argument
is rather easy:

\@makefntext \iffalse \fi

will do that. It executes and expands \@makefntext
until it comes to the point where it would process its
argument, which happens to be \iffalse, and then
kills the rest of \@makefntext. At least as long as the
argument #1 does not happen to be in itself inside of
a conditional, in which case bad things will happen.
Very bad things. But a pretty thorough sampling of
\@makefntext variants on TEX Live did not turn up
such code.

Much more problematic is getting hold of the second
part of \@makefntext. It turns out that about 95% of
the variations out there in different class files will work
with

\expandafter \iffalse \@makefntext \fi

which looks rather similar to the above. Unfortu-
nately, it is not quite equivalent, since in the upper
code, \@makefntext is cut into two once it has been
expanded up to its macro parameter, whereas in the
lower version it is cut into two before any parts of it
get expanded. If any of the closing braces that follow
#1 in the definition of \@makefntext happen to belong
to the argument of a macro starting before #1, they
will cause spurious closing groups.

Getting the closing part at the end of the footnote
without any remaining macro braces is more tricky, in-
efficient and error prone. One possibility is starting
another instance of \@makefntext inside of a box to
be discarded later. Then as its macro argument you
use code that will repeatedly be closing opened groups
until the outer group level is reached again and the
box can be discarded. ε-TEX’s grouping status macros
(\currentgrouplevel and \currentgrouptype) make
it possible to know how to close the current group and
whether it is the last involved one. After everything
that has been opened has been discarded again, the re-
maining tokens in the input stream should form a per-
fect complement to the tokens that the initial \iffalse
trick has discarded at the start of the footnote.

One other mechanism probably worth playing with
is the use of alignment templates, since they provide a
natural way of having TEX switch input contexts across
groups. The best approach in that regard would seem
to parse the content of the footnote within a \noalign
group of a \valign, but that still suffers from the prob-
lem that no automatic discretionaries are generated for
explicit hyphens.

Preprints EuroTEX2005 – Pont-à-Mousson, France WET07

The Bigfoot Bundle for Critical Editions
David Kastrup

141

But since most of the the \@makefntext variants out
in the field are covered with the simple variant (basi-
cally, this is the case for all definitions that do not
use #1 within a macro argument itself), bigfoot for
now has not added any of the more complicated ver-
sions. The group discarding trick might perhaps be
made available with a separate package option at a later
time, if there is sufficient demand for it.

But it may be easier in most cases simply to re-
write the culprits: after all, \@makefntext is rarely
complicated. Most notably, the \@makefntext of the
ltugboat class is so ridiculously contorted that the au-
tomated analysis of it fails. (It has been replaced with
an equivalent for this article.)

5.2.2 \@makefntext in ‘para’ footnotes

is really a bit out of place: the ‘para’ footnote style
sets all footnotes within one continuous running para-
graph, a manner of operation quite different from the
original intent of \@makefntext. Single footnotes are
first collected in horizontal mode, and at \output time
the relevant footnotes making it to the current page
are pasted together. This has several problems: for
one, \@makefntext will set paragraph breaking para-
meters. We need these at the time that we assemble
the footnotes into one paragraph. But \@makefntext
also generates the footnote mark, so we need to call it
for each footnote.

So even when we set \@thefnmark19 equal to an
empty string at footnote assembly time, the assembled
footnote mark will likely take up some additional space.
This is not the end of our worries: while the format-
ting will be right for standard footnotes, it does not
cater for ‘para’ footnotes. If we want to have a reason-
ably looking turnout, here are the conditions we have
to meet:

1. At the beginning of the footnote block, or if a foot-
note starts right after a line break, the specified
formatting should be used.

2. Within the line, we shall keep the spacing between
footnote mark and footnote text correct. How-
ever, most styles right-justify the footnote mark
within a box of fixed size. If we keep this sort of
formatting, we will end up with a large space be-
fore short footnote marks, and a small one before
longer marks. Since the amount of whitespace in-
side of a line should not be so large as to cause
unsightly white holes, nor so small to make the
footnote mark confused to be a part of the preced-
ing footnote, we want a fixed spacing before the
footnote mark.

The solution to these problems is to do a few measure-
ments: we measure the width that an empty footnote

19 the mark as displayed in the footnote

mark would cause in the footnote box (and start our
assembled footnotes with a negative space compensat-
ing that), and we typeset the footnote mark once on
its own with \@makefntext, fishing with \unskip and
\lastbox for the footnote mark box and resetting it
to its natural size (which will kill the particular jus-
tification prevalent in the majority of class files doing
justification). The difference in box size gets recorded
separately until the time that the footnote gets set, and
then the interfootnote glue is calculated accordingly.20

5.2.3 Maintaining the color stack

is not nice.21

What is the color stack, anyway? LATEX’s color
package provides color selection commands that will
change the current text color until the end of the group,
where it will be restored.

The involved macros are

\color@begin@group is called at the start of each
‘movable’ box: material that does not necessarily
appear right away. Without color support loaded,
this does nothing. With color support loaded, it
is usually equal to \begingroup.

\color@end@group is the corresponding macro at the
end of ‘movable’ boxen. Any color restoration ini-
tiated with \aftergroup in the box will happen
right here, still within the scope of the box, instead
of outside where it would not move with the box.

\set@color will be called for setting the current color.
It will also use \aftergroup in order to insert a
call to \reset@color when the group ends.

\reset@color will restore the current color to what it
was before the current group.

How will the color be restored? We have two different
models:

dvips restores colors by making use of a color stack:
dvips can ‘push’ a new color onto the stack,
and pop the previous color back. Consequently,
\reset@color inserts a special that tells dvips to
pop the stack once.

pdftex instead restores colors by reinstating the
color stored in \current@color after closing the
group.22

It is clear that the pdftex model is insufficient to even
keep the color of the main text across page breaks,

20 A few classes work with \parshape or \hangindent, either
directly or with a list environment, and this is also taken into
consideration as far as possible.

21 The main philosophy for work on the color stack has been
summarized well by David Carlisle: “It’s not my fault.”

22 Of course this means that if we are at the end of a movable

WET07 Preprints EuroTEX2005 – Pont-à-Mousson, France

142 The Bigfoot Bundle for Critical Editions
David Kastrup

since on the next page there is no special after the page
break that could switch back to the text color after the
page footer23 from the last page and headers from the
current page have been placed with a default color.24

But in the context of footnotes, the problem is
severely exacerbated: a footnote can be broken right
in the middle of a sequence of color changes. The tech-
nically sound solution would be to switch to a different
color stack for each footnote block. Since dvips does not
offer multiple color stacks (and pdftex does not even of-
fer a single one), we have to revert to trickery.

At each color change, the complete state of the color
stack gets recorded in a mark. When the footnote is
broken, we use the information in the mark in order
to unwind the color stack to the state on the page be-
fore the footnote was entered. When the footnote is
continued on the next page, the unwound color stack
is reinstated again. Whenever \color@begin@group is
called, the whole recording and restoration business is
stopped (since a new context has been started), the
record of the color stack essentially restored to empty,
and only resumed when the corresponding group has
ended.

In order to keep these proceedings fit for consump-
tion by the general public, the reader is referred to the
actual code for further details.

6 Outlook

At the time this article was written, quite a few tasks
remained to be done. Further improvements in the
footnote breaking decisions and their scoring metrics
are needed. Flushing footnotes out in the middle of the
page for short successive works would be nice. Amend-
ing footnotes with marginals (including line numbers)
in a manner consistent with the main text would seem
desirable. Additional footnote arrangements apart
from the existing basic two styles should be easily im-
plementable on top of the general scoring and breaking
mechanisms.

7 Conclusion

It is hoped and expected that this bundle will become
a basic building block for critical typesetting applica-
tions. While there are other packages available for that
purpose, bigfoot (with its companions) offers the fol-
lowing important features:

• It is completely layout-neutral: while most solu-
tions for critical typesetting are provided in the

box, the restored color will be that at the time the box was
assembled, not at the time it was used.

23 and footnotes
24 Heiko Oberdiek’s pdfcolmk package tries to deal with that

particular problem.

form of document classes, bigfoot does not make
layout decisions but instead just uses the layout
provided by a base class.

• Footnote arrangement and balancing is vastly su-
perior to and more flexible than any of the avail-
able solutions.

• Color works.

• The interfaces for creating new functionality fo-
cused around footnotes are reasonably simple.

At the time this article was written, not all interfaces
have yet been cast into stone. However, bigfoot can
be mostly used as an upwards-compatible drop-in re-
placement of manyfoot.

One can define a plain footnote style in the manner
of manyfoot, and then the default footnotes will get
replaced by this footnote style. In fact, if one does not
redefine the plain style, bigfoot will do so itself. Thus
just loading it without any further action on behalf of
the user will cater for the most common problems in
connection with footnotes.

At the current point of time, still problems remain to
be tackled: the accounting of page space and page splits
was modeled after TEX’s insertion mechanism and suf-
fers from the same problem with regard to shrinkability,
so in this paper, shrinkability has been removed from
footnotes, a bad temporary hack. Page breaks cur-
rently are calculated by looping inside of the output
routine instead of restarting it. In consequence, the
headlines are not correct when material gets pushed to
the next page. In a similar vein, floats like tables and
figures might appear too soon. This will get solved
with the next iteration of the package, after which a
regular release should be possible.

It is not entirely clear how to deal satisfactorily with
floats: if the first page size calculation results in a float
being moved to the next page, and then it is determined
that enough space on the current page is available for
placing the float, doing so will significantly reduce the
available space for the main text.

References

[1] http://sarovar.org/projects/bigfoot
(developer site and CVS instructions)

[2] CTAN:macros/latex/contrib/bigfoot
(released packages)

Preprints EuroTEX2005 – Pont-à-Mousson, France WET07

The Bigfoot Bundle for Critical Editions
David Kastrup

143

THT01 Preprints EuroTEX2005 – Pont-à-Mousson, France

No abstract available

144 XML to PDF, where does TEX fit in
Sebastian Rahtz, Hans Hagen

Tutorial
TEXPower — Dynamic Presentations with LATEX

Stephan Lehmke

QuinScape GmbH, Thomasstraße 1, 44135 Dortmund, Germany
Stephan.Lehmke@QuinScape.de
http://www.QuinScape.de

February 25, 2005

Abstract

The tutorial introduces the TEXPower bundle for LATEX, providing an environment for
designing dynamic pdf presentations, mainly for the purpose of displaying with a video
beamer.

The heart of the bundle is the texpower package, providing commands for incremental
display of page contents, commands for designing page backgrounds and ‘panels’, and
commands for navigation helpers.

A further important part of the bundle is the tpslifonts package, providing ‘display-
friendly’ font settings.

As the effects provided by texpower are implemented entirely based on the LATEX
kernel, without resorting to special effects like PostScript, TEXPower is independent of
the method of pdf generation and doesn’t rely on external postprocessors or such. It is
also completely independent of the document class used, though seminar-based classes
harmonising well with the texpower package are part of the bundle.

The tutorial will cover, in varying depth, the following subjects:

1. Overview of the TEXPower bundle

2. The powersem class

3. The tpslifonts package

4. texpower General Features

5. texpower’s Color Handling

6. Page backgrounds, Panels

7. Navigation helpers

8. Incremental display

9. Designing a Presentation

10. Typical Applications

Preprints EuroTEX2005 – Pont-à-Mousson, France THT02

TEXPower – Dynamic Presentations with LATEX
Stephan Lehmke

145

εXTEX – Under the Hood

Gerd Neugebauer Michael Niedermair

February 26, 2005

The εXTEX project aims at providing a reimplementation of TEX which is really open for
extensions. Right from the beginning some design limitations of TEX have been dropped.

One base feature of εXTEX is its configurability. It is possible to add new primitives by
providing the implementation and register them in the configuration – no recompilation is
required. This can even be performed from within the TEX macro language, if this feature
is enabled.

We will show how the internals of εXTEX work and which possibilities exist to extend
εXTEX and experiment with new features.

THT03 Preprints EuroTEX2005 – Pont-à-Mousson, France

146 εXTEX - Under the Hood
Gerd Neugebauer, Michael Niedermair

Preprints EuroTEX2005 – Pont-à-Mousson, France THT04

No abstract available

Metapost
Denis Roegel

147

TEXLive2004 Windows Installer

Staszek Wawrykiewicz

March 1, 2005

Abstract

As I have learnt from different mailing lists, there are still so many users sharing not only the sentiment
to fpTEX, but also prefer having the TEX installation conforming to the news in TDS/teTEX/web2c world.
Yeah, it seems that also so many Polish users still love fpTEX/TL for MSWindows...

I know that most of users received the TEXLive 2004 collection, but this time, unfortunately, the Windows
installer (usually the same as for fpTEX) is missing for some reasons. Anyway, I’d like to admit that
MSWindows port included in TEXLive2004 works very well with all that news introduced in TDS 1.1 and
TEXLive (thanks to Fabrice Popineau). What could the users (and followers of fpTEX) do with TEXLive2004?
I’d like to announce the provisional TEXLive2004 installation program for Windows users by the author Pawel
Jackowski:

ftp://ftp.gust.org.pl/pub/GUST/contrib/TL2004/tlpm1.0beta.zip

This program is dedicated for rather bold people (using sometimes the keyboard, instead of only the
mouse), anyway it allows to install from the TEXLive2004-CD any scheme, collection or package, make
listing of any scheme/collection/package, check dependencies and even uninstall the individual set, etc.

As this program doesn’t touch in any way users’ configuration (environment variables, registry), it can
be safely applied for "just try it" purposes. All (important) configuration steps can be found in the
‘tlpm.winconf’ file (sorry for that, but MSWindows is enough unpredictable, so we have to gather only
some hints).

THT05 Preprints EuroTEX2005 – Pont-à-Mousson, France

148 TEXLive 2004 Windows Installer
Staszek Wawrykiewicz

Installing and using Emacs, AUCTEX, RefTEX, preview-latex

David Kastrup

February 27, 2005

Abstract

The author’s preview-latex package for WYSIWYG editing of LATEX constructs is slated for inclusion
into AUCTEX right now. AUCTEX is by far the most prominent editing mode for LATEX and other TEX
formats for use with Emacs and XEmacs (and probably one of the most important document creation
environments for TEX/LATEX/ConTEXt/Texinfo altogether on most platforms). It offers document-adapted
command completion and insertion, automated analysis of style files, syntax highlighting and indentation
for readable source code and excellent TEX shell capabilities for PDFTEX, Omega and other engines. New
developments are a toolbar and several other goodies. Managing crossreferences and bibliographies is a
breeze with RefTEX, and additional tools like the symbolic formula manipulation system "calc" integrate
nicely as well.

In this workshop, we will tackle installing Emacs as well as AUCTEX and preview-latex, configuring it
for serious work, doing basic document creation taking a look at the possibilities Emacs offers on several
platforms. We will work with the current development version of GNU Emacs, that is going to be released
as 22.1 some time this year after almost 4 years of development since the last major new release.

Taking a look at the sparkling new bits and bytes fresh from the presses is going to prove both educational
as well as exciting.

Preprints EuroTEX2005 – Pont-à-Mousson, France THT06

Installing and using Emacs, AUCTEX, RefTEX, preview-latex
David Kastrup

149

FRT01 Preprints EuroTEX2005 – Pont-à-Mousson, France

No abstract available

150 ConTEXt
Hans Hagen

Preprints EuroTEX2005 – Pont-à-Mousson, France FRT02

No abstract available

Advanced LATEX
N. N.

151

List of Authors Preprints EuroTEX2005 – Pont-à-Mousson, France

List of Authors
Bold papercodes indicate primary authors

Bella, Gábor MOT02
Bezos, Javier MOT01
Detig, Christine MOT03
Dierker, Andre MOT09
Feuerstack, Thomas WET01
Fine, Jonathan MOT10
Gundlach, Patrick TUT06
Hagen, Hans TUT03, THT01, FRT01
Hàn Th MOT01
Haralambous, Yannis MOT02
Hefferon, Jim MOT05
Hoekwater, Taco MOT07
Hufflen, Jean-Michel WET02
Jackowski, Bogusław TUT09
Jans, Arne MOT09
Kastrup, David MOT04, WET07, THT06
Knuth, Donald TUT10
Küster, Johannes TUT08

Laurens, Jérôme WET05
Lehmke, Stephan MOT09, WET06, THT02
Lejay, Antoine WET03
Mittelbach, Frank TUT02
N., N. FRT02
Neugebauer, Gerd TUT05, THT03
Niedermair, Michael THT03
Nowacki, Janusz M. TUT09
Rahtz, Sebastian TUT01, THT01
Roegel, Denis MOT06, THT04
Rowley, Chris MOT03, TUT02
Schäfer, Frank-René WET04
Schrod, Joachim MOT03
Szabó, Péter MOT08
Twardoch, Adam TUT04
Wawrykiewicz, Staszek THT05
Zapf, Hermann TUT10

152 List of Authors

Participants List

— A —

Jacques André
IRISA/INRIA-Rennes
Jacques.Andre@irisa.fr
Campus de Bealieu
F-35042 Rennes cedex
France

— B —

Benjamin Bayart
bayartb@edgard.fdn.fr
10 rue du Croissant
F-75002 Paris
France

Kaveh Bazargan
River Valley Technologies
kaveh@river-valley.com
9 Browns Court, Kennford
Exeter, EX6 7XY
United Kingdom

Nelson H. F. Beebe
University of Utah Department of
Mathematics, 110 LCB
beebe@math.utah.edu
155 S 1400 E RM 233
Salt Lake City, 84112-0090
USA

Gábor Bella
ENST Bretagne
gabor.bella@enst-bretagne.fr
CS 83818
F-29238 Brest
France

André Bellaïche
Université Paris 7
abellaic@math.jussieu.fr
2, rue Pierre et Marie Curie
F-75005 Paris
France

Javier Bezos
Typesetter and Consultant
jbezos@wanadoo.es
C. Aldeanueva de la Vera, 15, 7-F
E-28044 Madrid
Spain

Thierry Bouche
Cellule MathDoc
thierry.bouche@ujf-grenoble.fr
B.P. 74
F-38402 Saint Martin d’Hères Cedex
France

Johannes Laurens Braams
TEXniek
johannes@braams.cistron.nl
Kersengaarde 33
NL-2723 BP Zoetermeer
The Netherlands

Klaus Braune
Universität Karlsruhe – Rechenzentrum
Klaus.Braune@rz.uni-karlsruhe.de
Zirkel 2 / Postfach 6980
D-76128 Karlsruhe
Germany

Gyöngyi Bujdosó
Faculty of Computer Science,
University of Debrecen
bujdoso@inf.unideb.hu
P.O. Box 12
H-4010 Debrecen
Hungary

— C —

Matteo Centonza
Società Italiana di Fisica
matteo@sif.it
Via Saragozza 12
I-40123 Bologna
Italy

Marie-Louise Chaix
EDP Sciences
mlchaix@edpsciences.org
17 av. du Hoggar
F-91940 Les Ulis
France

Hervé Choplin
Université de Tours
UFR Sciences et Techniques
choplin@delphi.phys.univ-tours.
fr
Parc de Grandmond
F-37200 Tours
France

Jean-Louis Colot
Université Libre de Bruxelles, cp 238
Calcul Symbolique sur Ordinateur
jlcolot@ulb.ac.be
Boulevard du Triomphe
B-1050 Bruxelles
Belgium

— D —

Andreas Dafferner
Heidelberger Akademie der
Wissenschaften
andreas.dafferner@urz.
uni-heidelberg.de
Karlstr. 4
D-69117 Heidelberg
Germany

Bernard Déchanez
b.dechanez@bluewin.ch
Route de Chany 90
CH-1564 Domdidier
Switzerland

Christine Detig
J. Schrod Net & Publication
Consultance GmbH
christine@detig.org
Kranichweg 1
D-63322 Rödermark
Germany

Andre Dierker
QuinScape GmbH
Andre.Dierker@QuinScape.de
Thomasstr. 1
D-44135 Dortmund
Germany

Luzia Dietsche
dietsche@gmx.de
Kissinger Str. 59
D-70372 Stuttgart
Germany

Michael Doob
Department of Mathematics
University of Manitoba
mdoob@ccu.umanitoba.ca
342 Machray Hall
Winnipeg, R3T 2N2
Canada

Preprints EuroTEX2005 – Pont-à-Mousson, France Participants List

Participants List 153

Karin Dornacher
DANTE e.V.
office@dante.de
Postfach 101840
D-69008 Heidelberg
Germany

— E —

Martin Etter
martin.etter@gmx.de
Bergstraße 5
D-70806 Kornwestheim
Germany

Christoph Eyrich
eyrich@math.tu-berlin.de
Skalitzer Straße 74a
D-10997 Berlin
Germany

— F —

Robin Fairbairns
rf@cl.cam.ac.uk
30 Mill End Road
Cambridge, CB1 9JP
United Kingdom

Hong Feng
RON’s Datacom Co., Ltd.
fred@mail.rons.net.cn
Suite 3-3, WuZhong Str. 200, Don
District
430040 Wuhan
China

Thomas Feuerstack
FernUniversität in Hagen
Universitätsrechenzentrum
Thomas.Feuerstack@fernuni-hagen.
de
Universitätstr. 21
D-58084 Hagen
Germany

Jonathan Fine
The Open University
j.fine@open.ac.uk
Walton Hall
Milton Keynes, MK7 6AA
United Kingdom

Robert Fischer
derfischer@gmx.net
Am Krümmelweg 8
D-54311 Trierweiler
Germany

Daniel Flipo
U.S.T.L.
daniel.flipo@univ-lille1.fr
Cité scientifique
F-59655 Villeneuve d’Ascq Cedex
France

David Fuchs
drfuchs@yahoo.com
1775 Newell Rd.
Palo Alto, California, 94303
USA

— G —

Ralf Gärtner
ralf.gaertner@t-systems.com
Ötztalerstr. 5b
D-81373 München
Germany

Falk Gerwig
flak2k@gmx.de
Im Schlehbusch 9
D-75397 Simmozheim
Germany

Michel Goossens
CERN
michel.goossens@cern.ch
Departement IT
CH-1211 Geneve 23
Switzerland

Steve Grathwohl
Duke University Press
grath@duke.edu
905 W Main Street Suite 18B
Durham, NC, 27701
USA

Holger Grothe
TU Darmstadt,
Fachbereich Mathematik
grothe@dalug.de
Kittlerstraße 38
D-64289 Darmstadt
Germany

Patrick Gundlach
patrick@gundla.ch
Universitätsstraße 71
D-44789 Bochum
Germany

Michael Guravage
Literate Solutions
guravage@literatesolutions.com
Mijndensedijk 11a
NL-3632NT Loenen aan de Vecht
The Netherlands

— H —

Hans Hagen
PRAGMA
Advanced Document Engineering
pragma@wxs.nl
Ridderstraat 27
NL-8061GH Hasselt
The Netherlands

Thê Thành Hàn
University of Education
in Ho Chi Minh City
hanthethanh@gmx.net
280 An Duong Vuong
Ho Chi Minh
Vietnam

Yannis Haralambous
ENST Bretagne
yannis.haralambous@
enst-bretagne.fr
CS 83818
F-29238 Brest
France

Jim Hefferon
St Michael’s College
ftpmaint@tug.ctan.org
Box 285
Colchester, VT, 05439
USA

Laure Heïgéas
France

Oliver Heins
olli@sopos.org
Auf dem Brinke 1
D-30453 Hannover
Germany

Participants List Preprints EuroTEX2005 – Pont-à-Mousson, France

154 Participants List

Hartmut Henkel
hartmut_henkel@gmx.de
In den Auwiesen 6
D-68723 Oftersheim
Germany

Taco Hoekwater
Elvenkind BV
taco@elvenkind.com
Spuiboulevard 269
NL-3311 GP Dordrecht
The Netherlands

Morten Høgholm
morten.hoegholm@latex-project.
org
Persillehaven 40, 1215
DK-2730 Herlev
Denmark

Klaus Höppner
DANTE e.V.
klaus@dante.de
Postfach 101840
D-69008 Heidelberg
Germany

Karel Horàk
Mathematical Institute,
Academy of Sciences
horakk@math.cas.cz
Zitna 25
CZ-115 67 Praha 1
Czech Republik

Sophie Hosotte
EDP Sciences
hosotte@edpsciences.org
17 av. du Hoggar - BP 112 -
Courtaboeuf
F-91944 Les Ulis Cedex A
France

Jean-Michel Hufflen
LIFC - Université de Franche-Comté
hufflen@lifc.univ-fcomte.fr
16, route de Gray
F-25031 Besancon CEDEX
France

— J —

Bogusław Jackowski
BOP
b_jackowski@gust.org.pl
Bora-Komorowskiego 24
PL-80-377 Gdańsk
Poland

Jean-Paul Jorda
EDP Sciences
jorda@edpsciences.org
17 av du hoggar
F-91940 Les Ulis
France

— K —

David Kastrup
dak@gnu.org
Kriemhildstr. 15
D-44793 Bochum
Germany

Jörg Knappen
jknappen@web.de
Dieselstraße 13
D-66123 Saarbrücken
Germany

Donald E. Knuth
USA

Thomas Koch
Dante e.V.
thomas@dante.de
Tempelstraße 20
D-50679 Köln
Germany

Harald König
koenig@linux.de
Königsberger Str. 90
D-72336 Balingen
Germany

Reinhard Kotucha
reinhard.kotucha@web.de
Marschnerstr. 25
D-30167 Hannover
Germany

Johannes Küster
typoma
info@typoma.com
Karl-Stieler-Str. 4
D-83607 Holzkirchen
Germany

— L —

Klaus Lagally
Universität Stuttgart
lagallyk@acm.org
Universitätsstraße 38
D-70569 Stuttgart
Germany

Joachim Lammarsch
Rechenzentrum der
Universität Heidelberg
joachim.lammarsch@urz.
uni-heidelberg.de
Im Neuenheimer Feld 293
D-69120 Heidelberg
Germany

Marion Lammarsch
Psychologisches Institut der
Universität Heidelberg
marion.lammarsch@psychologie.
uni-heidelberg.de
Hauptstraße 47-51
D-69117 Heidelberg
Germany

Dag Langmyhr
University of Oslo
dag@ifi.uio.no
PO box 1080 Blindern
N-0316 Oslo
Norway

Maurice Laugier
GUTenberg
laugier.maurice@tele2.fr
La Haute Tourronde
F-05000 Gap
France

Jérôme Laurens
Département de Mathématiques,
Université de Bourgogne
jerome.laurens@u-bourgogne.fr
9, avenue Alain Savary
F-21034 Dijon cedex
France

Preprints EuroTEX2005 – Pont-à-Mousson, France Participants List

Participants List 155

Matthieu Laverne
Black Media
insert@easynet.fr
43, rue du Commerce
F-75015 Paris
France

Stephan Lehmke
QuinScape GmbH
Stephan.Lehmke@QuinScape.de
Thomasstraße 1
D-44135 Dortmund
Germany

Martin Wilhelm Leidig
Martin.Leidig@onlinehome.de
Centgrafenweg 9
D-69181 Leimen
Germany

Antoine Lejay
INRIA Lorraine
Antoine.Lejay@iecn.u-nancy.fr
BP 239
F-54506 Vandoeuvre-les-Nancy CEDEX
France

Knut Lickert
eurotex2005.9.knut68@
spamgourmet.org
Obertorstr. 61
D-73728 Esslingen
Germany

Manfred Lotz
manfred@dante.de
Sindlinger Str. 8
D-60326 Frankfurt
Germany

Thomas Lotze
thomas.lotze@latex-project.org
Ziegelmühlenweg 3
D-07743 Jena
Germany

Jerzy Ludwichowski
Polish TEX Users Group - GUST
Jerzy.Ludwichowski@uni.torun.pl
Plac Rapackiego 1
PL-87-100 Toruń
Poland

— M —

Lars Madsen
Department of Mathematical Sciences
University of Aarhus Denmark
daleif@imf.au.dk
Tousvej 97, 2.TV
DK-8230 Aabyhoej
Denmark

Gisela Mannigel
gm@tesionmail.de
Auenweg 2A
D-82407 Wielenbach
Germany

Lionel Marcouire
Dauphine
lionel@marcouire.com
25 rue de la Libération
F-92500 Rueil-Malmaison
France

Wendy McKay
Control and Dynamical Systems
California Institute of Technology
wgm@cds.caltech.edu
M/C 107-81 (1200 E California Blvd)
Pasadena, 91125-8100
USA

Frank Mittelbach
LATEX3 Project
frank.mittelbach@latex-project.
org
Zedernweg 62
D-55128 Mainz
Germany

Mikael Möller
TEX-Försäljning AB
texab@faksimil.se
Kampementsgatan 34
S-11538 Stockholm
Sweden

— N —

Gerd Neugebauer
gene@gerd-neugebauer.de
Im Lerchelsböhl 5
D-64521 Groß-Gerau
Germany

Richard WD Nickalls
Department of Anæsthesia,
City Hospital, Nottingham
dicknickalls@compuserve.com
Hucknall Road
Nottingham, NG5-1PB
United Kingdom

Michael Niedermair
m.g.n@gmx.de
Am Malerwinkel 16
D-85778 Haimhausen
Germany

Janusz Nowacki
FOTO-ALFA
j.nowacki@gust.org.pl
Al. 23 Stycznia 54D
PL-86-300 Grudziądz
Poland

— O —

Cezary Obczyński
Faculty of Mathematics, University Łódż
czacza@math.uni.lodz.pl
Banacha 22
PL-90-238 Łódż
Poland

Heiko Oberdiek
oberdiek@uni-freiburg.de
Kärntner Weg 3
D-79111 Freiburg
Germany

— P —

Gilles Pérez-Lambert
Université Paul-Valéry, Montpellier III
Gilles.Perez@univ-montp3.fr
Route de Mende
F-34199 Montpellier Cédex 5
France

Éric Picheral
eric.picheral@free.fr
16 rue du docteur Ferrand
F-35200 Rennes
France

Participants List Preprints EuroTEX2005 – Pont-à-Mousson, France

156 Participants List

Karel Piska
Institute of Physics,
Academy of Sciences
piska@fzu.cz
Na Slovance 2
CZ-18221 Prague
Czech Republik

Fabrice Popineau
Supélec
fabrice.popineau@supelec.fr
2 rue E. Belin
F-57070 Metz
France

Christophe Pythoud
ABCIS Sarl
pythoud@abcis.ch
22, rue du Pont
CH-1003 Lausanne
Switzerland

— R —

Sebastian Rahtz
Oxford University
sebastian.rahtz@gmail.com
13 Banbury Road
Oxford, OX2 7BG
United Kingdom

Bernd Raichle
DANTE e.V.
bernd.raichle@gmx.de
Kissinger Str. 59
D-70372 Stuttgart
Germany

Henri Rasolofomasoandro
he.rasolof@libertysurf.fr
54 Chemin d’Arvillard
F-74160 Archamps
France

Thomas Ratajczak
ratajczak@web.de
Wredestr. 10
D-97082 Würzburg
Germany

Arthur Reutenauer
École normale supérieure
Arthur.Reutenauer@ens.fr
45 rue d’Ulm
F-75005 Paris
France

Denis Roegel
LORIA – University of Nancy 2
roegel@loria.fr
LORIA – BP 239
F-54506 Vandoeuvre les Nancy cedex
France

Christian Rossi
rossi@in2p3.fr
168 cours Lafayette
F-69003 Lyon
France

Chris Rowley
Open University / LATEX3
c.a.rowley@open.ac.uk
1-11 Hawley Crescent
London, NW1 8NP
United Kingdom

Erich Ruff
Erich_Ruff@T-Online.de
Kruckenburgstr. 21
D-81375 München
Germany

— S —

Volker RW Schaa
DANTE e.V.
volker@dante.de
Landwehrstraße 33
D-64293 Darmstadt
Germany

Frank-René Schäfer
Germany

Walter Schmidt
w.a.schmidt@gmx.net
Nürnberger Straße 76
D-91052 Erlangen
Germany

Joachim Schrod
J. Schrod Net & Publication
Consultance GmbH
jschrod@acm.org
Kranichweg 1
D-63322 Rödermark
Germany

Martin Schröder
martin@oneiros.de
Crüsemannallee 3
D- Bremen
Germany

Torsten Schütze
Siemens AG, CT IC 3
torsten.schuetze@siemens.com
Otto-Hahn-Ring 6
D-81739 München
Germany

Peter Seitz
p.seitz@ks-ingenieurconsult.de
Kleinreuther Weg 53
D-90408 Nürnberg
Germany

Martin Sievers
Martin.Sievers@Schaephuysen.de
Im Treff 8
D-54296 Trier
Germany

Karel Skoupẏ
ETH Zürich
skoupy@inf.ethz.ch
Manegg Promenade 136
CH-8041 Zürich
Switzerland

Petr Sojka
Masaryk University in Brno
Faculty of Informatics
sojka@fi.muni.cz
Botanicka 68a
CZ-60200 Brno
Czech Republik

Tobias Sterzl
DANTE e.V.
tobias.sterzl@gmx.de
Häldenstraße 30
D-75236 Kämpfelbach
Germany

Thierry Stoehr
AFUL - Formats-Ouverts.org
stoehr@aful.org
34 rue de l’écluse
F-77000 Melun
France

Preprints EuroTEX2005 – Pont-à-Mousson, France Participants List

Participants List 157

Péter Szabó
BUTE Department of Computer Science
and Information Theory
pts@inf.bme.hu
Mũegyetem rakpart 3–9
H-1111 Budapest
Hungary

Jolanta Szelatyńska
Nicolaus Copernicus University,
IT Centre
Jolanta.Szelatynska@uni.torun.pl
Plac Rapackiego 1
PL-87-100 Toruń
Poland

— T —

Adam Twardoch
adam@twardoch.com
Logenstr. 2/301
D-15230 Frankfurt (Oder)
Germany

— V —

Erik Van Eynde
LUDIT — Katholieke Universiteit Leuven
Erik.VanEynde@cc.kuleuven.ac.be
De Croyelaan 52a
B-3001 Heverlee
Belgium

Ulrik Vieth
ulrik.vieth@tesionmail.de
Vaihinger Straße 69
D-70567 Stuttgart
Germany

— W —

Zofia Walczak
Department of Mathematics,
University of Łódż
zofiawal@math.uni.lodz.pl
Banacha 22
PL-90-238 Łódż
Poland

Sebastian Waschik
sebastian.waschik@gmx.de
Kätnerweg 13f
D-22393 Hamburg
Germany

Stanisław Wawrykiewicz
GUST
staw@gust.org.pl
Broniewskiego 2/2
PL-81-837 Sopot
Poland

Olaf Weber
olaf@infovore.xs4all.nl
Boulevard Heuvelink 1-11
NL-6828KG Arnhem
The Netherlands

Gerben Wierda
Gerben.Wierda@rna.nl
The Netherlands

— Z —

Hermann Zapf
Seitersweg 35
D-64287 Darmstadt
Germany

Participants List Preprints EuroTEX2005 – Pont-à-Mousson, France

158 Participants List

	Preface
	Schedule
	Contents

	Monday - Talks
	MOT01 -- Mem. A Multilingual Environment for LaTeX with Aleph
	MOT02 -- Omega Becomes a Sign Processor
	MOT03 -- A Taxonomy of Automated Typesetting Systems
	MOT04 -- Designing an Implementation Language for a TeX Successor
	MOT05 -- CTAN Plans
	MOT06 -- MP2GL: prototyping 3D objects with Metapost
	MOT07 -- Metapost Developments
	MOT08 -- Verbatim Phrases and Listings in LaTeX
	MOT09 -- From RTF to XML to LaTeX
	MOT10 -- TeX Forever!

	Tuesday - Talks
	TUT01 -- The TEI/TeX Interface
	TUT02 -- LaTeX3 News
	TUT03 -- The 16 Faces of a Dutch Math Journal
	TUT04 -- Typographic Perfection with OpenType?
	TUT05 -- Namespaces for XTeX
	TUT06 -- contextgarden.net: The ConTeXt Wiki
	TUT07 -- Experiences with Micro-Typographic Extensions of pdfTeX in Practice
	TUT08 -- NewMath and Unicode
	TUT09 -- Latin Modern fonts: how less means more
	TUT10 -- Panel discussion with Hermann Zapf and Donald Knuth: 'With a little help from the wizards'

	Wednesday - Talks
	WET01 -- ProTeXt, a new TeX-Collection for Beginners
	WET02 -- Bibliography Styles Easier with MlBibTeX
	WET03 -- La machine à formulaires (The Forms' Machine)
	WET04 -- SäferTeX: Source Code Esthetics for Automated Typesetters
	WET05 -- The TeX Wrapper Structure: A Basic TeX Document Model Implemented in iTeXMac
	WET06 -- Case Study of TeX in Commercial Data Based Publishing: Completely Automatic Typesetting of a Large Product Catalogue
	WET07 -- The Bigfoot Bundle for Critical Editions

	Thursday - Tutorials
	THT01 -- XML to PDF, where does TeX fit in
	THT02 -- TeXPower -- Dynamic Presentations with LaTeX
	THT03 -- XTeX - Under the Hood
	THT04 -- Metapost
	THT05 -- TeXLive 2004 Windows Installer
	THT06 -- Installing and using Emacs, AUCTeX, RefTeX, preview-latex

	Friday - Tutorials
	FRT01 -- ConTeXt
	FRT02 -- Advanced LaTeX

	Appendices
	List of Authors
	Participants List

